Autologous mitochondrial microinjection; a strategy to improve the oocyte quality and subsequent reproductive outcome during aging

Author:

Mobarak Halimeh,Heidarpour Mohammad,Tsai Pei-Shiue Jason,Rezabakhsh Aysa,Rahbarghazi Reza,Nouri Mohammad,Mahdipour MahdiORCID

Abstract

AbstractAlong with the decline in oocyte quality, numerous defects such as mitochondrial insufficiency and the increase of mutation and deletion have been reported in oocyte mitochondrial DNA (mtDNA) following aging. Any impairments in oocyte mitochondrial function have negative effects on the reproduction and pregnancy outcome. It has been stated that infertility problems caused by poor quality oocytes in women with in vitro fertilization (IVF) and repeated pregnancy failures are associated with aging and could be overcome by transferring large amounts of healthy mitochondria. Hence, researches on biology, disease, and the therapeutic use of mitochondria continue to introduce some clinical approaches such as autologous mitochondrial transfer techniques. Following mitochondrial transfer, the amount of ATP required for aged-oocyte during fertilization, blastocyst formation, and subsequent embryonic development could be an alternative modality. These modulations improve the pregnancy outcome in women of high reproductive aging as well. In addition to overview the clinical studies using mitochondrial microinjection, this study provides a framework for future approaches to develop effective treatments and preventions of congenital transmission of mitochondrial DNA mutations/diseases to offspring. Mitochondrial transfer from ovarian cells and healthy oocytes could lead to improved fertility outcome in low-quality oocytes. The modulation of mitochondrial bioactivity seems to regulate basal metabolism inside target oocytes and thereby potentiate physiological activity of these cells while overcoming age-related infertility in female germ cells.

Publisher

Springer Science and Business Media LLC

Subject

General Biochemistry, Genetics and Molecular Biology

Reference82 articles.

Cited by 46 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3