Transcriptomic analysis reveals the key role of histone deacetylation via mediating different phytohormone signalings in fiber initiation of cotton

Author:

Wei Zhenzhen,Li Yonghui,Ali Faiza,Wang Ye,Liu Jisheng,Yang Zuoren,Wang ZhiORCID,Xing Yadi,Li Fuguang

Abstract

Abstract Background Histone deacetylation is one of the most important epigenetic modifications and plays diverse roles in plant development. However, the detailed functions and mechanisms of histone deacetylation in fiber development of cotton are still unclear. HDAC inhibitors (HDACi) have been commonly used to study the molecular mechanism underlying histone deacetylation or to facilitate disease therapy in humans through hindering the histone deacetylase catalytic activity. Trichostatin A (TSA)—the most widely used HDACi has been extensively employed to determine the role of histone deacetylation on different developmental stages of plants. Results Through in vitro culture of ovules, we observed that exogenous application of TSA was able to inhibit the fiber initiation development. Subsequently, we performed a transcriptomic analysis to reveal the underlying mechanisms. The data showed that TSA treatment resulted in 4209 differentially expressed genes, which were mostly enriched in plant hormone signal transduction, phenylpropanoid biosynthesis, photosynthesis, and carbon metabolism pathways. The phytohormone signal transduction pathways harbor the most differentially expressed genes. Deeper studies showed that some genes promoting auxin, Gibberellic Acid (GA) signaling were down-regulated, while some genes facilitating Abscisic Acid (ABA) and inhibiting Jasmonic Acid (JA) signaling were up-regulated after the TSA treatments. Further analysis of plant hormone contents proved that TSA significantly promoted the accumulation of ABA, JA and GA3. Conclusions Collectively, histone deacetylation can regulate some key genes involved in different phytohormone pathways, and consequently promoting the auxin, GA, and JA signaling, whereas repressing the ABA synthesis and signaling to improve the fiber cell initiation. Moreover, the genes associated with energy metabolism, phenylpropanoid, and glutathione metabolism were also regulated by histone deacetylation. The above results provided novel clues to illuminate the underlying mechanisms of epigenetic modifications as well as related different phytohormones in fiber cell differentiation, which is also very valuable for the molecular breeding of higher quality cotton.

Funder

National Natural Science Foundation of China

Creative Work and Research Committee, Valparaiso University

Publisher

Springer Science and Business Media LLC

Subject

General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3