Abstract
AbstractAn intrinsic link between metabolism and function in immune cells, and in particular macrophages, has been well established recently. However, the molecular mechanisms controlling the metabolic switch in these sentinel cells for their integral roles in host defense, inflammation, homeostasis, and pathogenesis remain largely unknown. Here, we identify the master transcription factor NF-κB RelA as a vital cell-intrinsic checkpoint restricting aerobic glycolysis to favor mitochondrial oxidative phosphorylation (OXPHOS) and “M2” activation (alternative anti-inflammatory and pro-tumorigenic activation, in contrast to classical pro-inflammatory and anti-tumor M1 activation) of macrophages under oncogenic stress. RelA specific knockdown or genetic deletion in macrophages causes metabolism to shift away from OXPHOS toward glycolysis, resulting in drastically decreased oxygen consumption but significantly increased lactate and ATP production. The metabolic change in RelA deficient cells is associated with the decrease in the expressions of the OXPHOS gene SCO2 as well as the M2 marker and function genes arginase-1 and VEGF. These data suggest that RelA induces SCO2 expression to enhance OXPHOS and restrict glycolysis in macrophages for their pro-tumorigenic activation.
Funder
National Institutes of Health
American Cancer Society
American Lung Association
Tobacco-Related Disease Research Program
Publisher
Springer Science and Business Media LLC
Reference10 articles.
1. Kolliniati O, Ieronymaki E, Vergadi E, Tsatsanis C. Metabolic regulation of macrophage activation. J Innate Immun. 2022;14(1):51–68.
2. Li M, He L, Zhu J, Zhang P, Liang S. Targeting tumor-associated macrophages for cancer treatment. Cell Biosci. 2022;12(1):85.
3. Zhou J, Qu Z, Sun F, Han L, Li L, Yan S, Stabile LP, Chen LF, Siegfried JM, Xiao G. Myeloid STAT3 promotes lung tumorigenesis by transforming tumor immunosurveillance into tumor-promoting inflammation. Cancer Immunol Res. 2017;5(3):257–68.
4. Galván-Peña S, O’Neill LA. Metabolic reprograming in macrophage polarization. Front Immunol. 2014;5:420.
5. de Goede KE, Driessen AJM, Van den Bossche J. Metabolic cancer-macrophage crosstalk in the tumor microenvironment. Biology (Basel). 2020;9(11):380.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献