SENP6 induces microglial polarization and neuroinflammation through de-SUMOylation of Annexin-A1 after cerebral ischaemia–reperfusion injury

Author:

Mao Meng,Xia Qian,Zhan Gao-Feng,Chu Qin-Jun,Li XingORCID,Lian Hong-Kai

Abstract

Abstract Background Previous data have reported that Sentrin/SUMO-specific protease 6 (SENP6) is involved in ischaemic brain injury and induces neuronal apoptosis after cerebral ischaemia, but the role of SENP6 in microglia-induced neuroinflammation and its underlying mechanism remain poorly understood. This research systematically explored the function and potential mechanism of SENP6 in microglia-induced neuroinflammation after ischaemic stroke. Results We first identified an increased protein level of SENP6 in microglia after cerebral ischaemia. Then, we demonstrated that SENP6 promoted detrimental microglial phenotype polarization. Specifically, SENP6-mediated de-SUMOylation of ANXA1 targeted the IκB kinase (IKK) complex and selectively inhibited the autophagic degradation of IKKα in an NBR1-dependent manner, activating the NF-κB pathway and enhancing proinflammatory cytokine expression. In addition, downregulation of SENP6 in microglia effectively reduced cocultured neuronal damage induced by ischaemic stroke. More importantly, we employed an AAV-based technique to specifically knockdown SENP6 in microglia/macrophages, and in vivo experiments showed that SENP6 inhibition in microglia/macrophages notably lessened brain ischaemic infarct size, decreased neurological deficit scores, and ameliorated motor and cognitive function in mice subjected to cerebral ischaemia surgery. Conclusion We demonstrated a previously unidentified mechanism by which SENP6-mediated ANXA1 de-SUMOylation regulates microglial polarization and our results strongly indicated that in microglia, inhibition of SENP6 may be a crucial beneficial therapeutic strategy for ischaemic stroke. Graphical Abstract

Funder

National Natural Science Foundation of China

Tongji Hospital (HUST) Foundation for Excellent Young Scientist

Key Research Project of Advanced Medical Research Center of Zhengzhou Central Hospital

Talent Research Start-Up Fund Project of Zhengzhou Central Hospital

Publisher

Springer Science and Business Media LLC

Subject

General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3