Integrating pathology, chromosomal instability and mutations for risk stratification in early-stage endometrioid endometrial carcinoma

Author:

Li Yuan,Li Jiaqi,Guo Ensong,Huang Jia,Fang Guangguang,Chen Shaohua,Yang Bin,Fu Yu,Li Fuxia,Wang Zizhuo,Xiao Rourou,Liu Chen,Huang Yuhan,Wu Xue,Lu Funian,You Lixin,Feng Ling,Xi Ling,Wu Peng,Ma Ding,Sun Chaoyang,Wang Beibei,Chen Gang

Abstract

Abstract Background Risk stratifications for endometrial carcinoma (EC) depend on histopathology and molecular pathology. Histopathological risk stratification lacks reproducibility, neglects heterogeneity and contributes little to surgical procedures. Existing molecular stratification is useless in patients with specific pathological or molecular characteristics and cannot guide postoperative adjuvant radiotherapies. Chromosomal instability (CIN), the numerical and structural alterations of chromosomes resulting from ongoing errors of chromosome segregation, is an intrinsic biological mechanism for the evolution of different prognostic factors of histopathology and molecular pathology and may be applicable to the risk stratification of EC. Results By analyzing CIN25 and CIN70, two reliable gene expression signatures for CIN, we found that EC with unfavorable prognostic factors of histopathology or molecular pathology had serious CIN. However, the POLE mutant, as a favorable prognostic factor, had elevated CIN signatures, and the CTNNB1 mutant, as an unfavorable prognostic factor, had decreased CIN signatures. Only if these two mutations were excluded were CIN signatures strongly prognostic for outcomes in different adjuvant radiotherapy subgroups. Integrating pathology, CIN signatures and POLE/CTNNB1 mutation stratified stageIendometrioid EC into four groups with improved risk prognostication and treatment recommendations. Conclusions We revealed the possibility of integrating histopathology and molecular pathology by CIN for risk stratification in early-stage EC. Our integrated risk model deserves further improvement and validation.

Funder

National Key Research and Development Program

Nature and Science Foundation

Publisher

Springer Science and Business Media LLC

Subject

General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3