HIF1A-repressed PUS10 regulates NUDC/Cofilin1 dependent renal cell carcinoma migration by promoting the maturation of miR-194-5p

Author:

Luo Wenqin,Xu Zhehao,Wang Huan,Lu Zeyi,Ding Lifeng,Wang Ruyue,Xie Haiyun,Zheng Qiming,Lin Yudong,Zhou Zhenwei,Li Yang,Chen Xianjiong,Li GonghuiORCID,Xia LiqunORCID

Abstract

Abstract Background Renal cell carcinoma (RCC) is characterized by a high rate of distant metastasis, which leads to poor prognosis in patients with advanced RCC. PUS10 has been recognized as a member of the pseudouridine synthase family, and recently other functions beyond the synthesis of the RNA modification have been uncovered. However, little is known about its role in diseases such as cancer. Methods RT-qPCR, western blot and immunohistochemistry were used to measure the expression of PUS10 in RCC tissues. Transwell assay, wound healing assay, and in vivo metastasis model were conducted to determine the function of PUS10 in RCC progression. MicroRNA sequencing and GEO database were used to screen for the downstream microRNAs of PUS10. RNA immunoprecipitation, dual luciferase reporter assay, immunostaining, and rescue experiments were employed to establish the PUS10/miR-194-5p/nuclear distribution protein C(NUDC)/Cofilin1 axis in RCC migration. Chromatin immunoprecipitation and dual luciferase reporter assay were used to verify its upstream transcriptional regulator. Results The expression of PUS10 was significantly decreased in RCC tissues, and low expression predicted poor prognosis. In vitro and in vivo experiments showed that PUS10 suppressed RCC migration, which, however, was independent of its classical pseudouridine catalytic function. Mechanically, PUS10 promoted the maturation of miR-194-5p, which sequentially inhibited RCC migration via disrupting NUDC-dependent cytoskeleton. Furthermore, hypoxia and HIF-1 A were found involved in the downregulation of PUS10. Conclusion We unraveled PUS10 restrained RCC migration via the PUS10/miR-194-5p/NUDC/Cofilin1 pathway, which independent of its classical catalytic function. Furthermore, a linkage between the critical tumor microenvironment hallmark with malfunction of the forementioned metastasis inhibition mechanism was presented, as demonstrated by repressed expression of PUS10 due to hypoxia and HIF-1A.

Funder

Joint construction project of Zhejiang Province and Ministry

National Natural Science Foundation of China

Key R & D plan of Zhejiang Province

Publisher

Springer Science and Business Media LLC

Subject

General Biochemistry, Genetics and Molecular Biology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3