Ang-(1–7)/MasR axis promotes functional recovery after spinal cord injury by regulating microglia/macrophage polarization

Author:

Gu Guangjin,Zhu Bin,Ren Jie,Song Xiaomeng,Fan Baoyou,Ding Han,Shang Jun,Wu Heng,Li Junjin,Wang Hongda,Li Jinze,Wei Zhijian,Feng ShiqingORCID

Abstract

Abstract Background Inflammatory response is an essential part of secondary injury after spinal cord injury (SCI). During this period, the injury may be exacerbated through the release of a large number of inflammatory factors and the polarization of infiltrating macrophages and microglia towards M1. Ang-(1–7), mainly generated by Ang II via angiotensin-converting enzyme 2 (ACE2), can specifically bind to the G protein-coupled receptor Mas (MasR) and plays an important role in regulating inflammation and alleviating oxidative stress. Methods We aimed to investigate whether activating the Ang-(1–7)/MasR axis in rats after SCI can regulate local neuroinflammation to achieve functional recovery and obtain its potential mechanism. MasR expression of bone marrow-derived macrophages was determined by Western blot. Immunofluorescence, Western blot, Flow cytometry, and RT-qPCR were applied to evaluate the polarization of Ang-(1–7) on macrophages and the regulation of inflammatory cytokines. Previous evaluation of the spinal cord and bladder after SCI was conducted by hematoxylin–eosin staining, Basso, Beattie, and Bresnahan (BBB) score, inclined plate test, electrophysiology, and catwalk were used to evaluate the functional recovery of rats. Results MasR expression increased in macrophages under inflammatory conditions and further elevated after Ang-(1–7) treatment. Both in vivo and in vitro results confirmed that Ang-(1–7) could regulate the expression of inflammatory cytokines by down-regulating proinflammatory cytokines and up-regulating anti-inflammatory cytokines, and bias the polarization direction of microglia/macrophages to M2 phenotypic. After SCI, Ang-(1–7) administration in situ led to better histological and functional recovery in rats, and this recovery at least partly involved the TLR4/NF-κB signaling pathway. Conclusion As shown in our data, activating Ang-(1–7)/MasR axis can effectively improve the inflammatory microenvironment after spinal cord injury, promote the polarization of microglia/macrophages towards the M2 phenotype, and finally support the recovery of motor function. Therefore, we suggest using Ang-(1–7) as a feasible treatment strategy for spinal cord injury to minimize the negative consequences of the inflammatory microenvironment after spinal cord injury.

Funder

National Key Research and Development Program of China Stem Cell and Translational Research

Innovative Research Group Project of the National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3