BRD4 inhibitor GNE987 exerts anti-cancer effects by targeting super-enhancers in neuroblastoma

Author:

Chen Yan-Ling,Li Xiao-Lu,Li Gen,Tao Yan-Fang,Zhuo Ran,Cao Hai-Bo,Jiao Wan-yan,Li Zhi-Heng,Zhu Zhen-Hong,Fang Fang,Xie Yi,Liao Xin-Mei,Wu Di,Wang Hai-Rong,Yu Juan-Juan,Jia Si-Qi,Yang Yang,Feng Chen-Xi,Yang Peng-Cheng,Fei Xiao-Dong,Wang Jian-Wei,Xu Yun-Yun,Qian Guang-Hui,Zhang Zi-Mu,Pan JianORCID

Abstract

Abstract Background Neuroblastoma (NB) is a common extracranial malignancy with high mortality in children. Recently, super-enhancers (SEs) have been reported to play a critical role in the tumorigenesis and development of NB via regulating a wide range of oncogenes Thus, the synthesis and identification of chemical inhibitors specifically targeting SEs are of great urgency for the clinical therapy of NB. This study aimed to characterize the activity of the SEs inhibitor GNE987, which targets BRD4, in NB. Results In this study, we found that nanomolar concentrations of GNE987 markedly diminished NB cell proliferation and survival via degrading BRD4. Meanwhile, GNE987 significantly induced NB cell apoptosis and cell cycle arrest. Consistent with in vitro results, GNE987 administration (0.25 mg/kg) markedly decreased the tumor size in the xenograft model, with less toxicity, and induced similar BRD4 protein degradation to that observed in vitro. Mechanically, GNE987 led to significant downregulation of hallmark genes associated with MYC and the global disruption of the SEs landscape in NB cells. Moreover, a novel candidate oncogenic transcript, FAM163A, was identified through analysis of the RNA-seq and ChIP-seq data. FAM163A is abnormally transcribed by SEs, playing an important role in NB occurrence and development. Conclusion GNE987 destroyed the abnormal transcriptional regulation of oncogenes in NB by downregulating BRD4, which could be a potential therapeutic candidate for NB.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jiangsu Province

the Universities Natural Science Foundation of Jiangsu Province

Jiangsu province's science and technology support program

Jiangsu province's science and technology support program (Social Development) project

Jiangsu Province Key R&D Program (Social Development) Projects

Publisher

Springer Science and Business Media LLC

Subject

General Biochemistry, Genetics and Molecular Biology

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3