Sirt6 opposes glycochenodeoxycholate-induced apoptosis of biliary epithelial cells through the AMPK/PGC-1α pathway

Author:

Li Jiye,Yu Dongsheng,Chen Sanyang,Liu Yifan,Shi Jihua,Zhang Jiakai,Wen Peihao,Wang Zhihui,Li Jie,Guo Wenzhi,Zhang Shuijun

Abstract

Abstract Background Induction of biliary epithelial cell apoptosis by toxic bile acids is involved in the development of cholestatic disease, but the underlying molecular mechanism is not clear. The purpose of this study was to investigate the molecular mechanisms involved in Sirt6 protection against the apoptosis of human intrahepatic biliary epithelial cells (HiBEC) induced by the bile acid glycochenodeoxycholate (GCDC). Results Sirt6 was either overexpressed or knocked down in HiBEC, with or without GCDC pretreatment. The CCK-8 assay was used to assess cell viability and, Hoechst 33258 staining was used to determine apoptotic rate. Mitochondrial DNA (mtDNA) copy number, malondialdehyde (MDA) and reactive oxygen species (ROS) production were detected to evaluate the severity of the mitochondrial dysfunction and oxidative stress. The mRNA and protein levels of PGC-1α, Nrf1, and Nrf2 were analyzed using RT-qPCR and western blot assay. The results showed that Sirt6 opposed GCDC-induced apoptosis in HiBEC via up-regulating PGC-1α expression and stabilizing mtDNA. We used agonists and inhibitors of AMPK to demonstrate that Sirt6 increased PGC-1α expression through the AMPK pathway whereas GCDC had the opposite effect. Finally, western blot, luciferase assay, and co-immunoprecipitation were used to describe a direct interaction and acetylation modification of PGC-1α by Sirt6. Conclusion Our data illuminated that Sirt6 ameliorated GCDC-induced HiBEC apoptosis by upregulating PGC-1α expression through the AMPK pathway and its deacetylation effect.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3