Abstract
Abstract
Background
Parkin dysfunction associated with the progression of parkinsonism contributes to a progressive systemic skeletal disease characterized by low bone mineral density. However, the role of parkin in bone remodeling has not yet been elucidated in detail.
Result
We observed that decreased parkin in monocytes is linked to osteoclastic bone-resorbing activity. siRNA-mediated knockdown of parkin significantly enhanced the bone-resorbing activity of osteoclasts (OCs) on dentin without any changes in osteoblast differentiation. Moreover, Parkin-deficient mice exhibited an osteoporotic phenotype with a lower bone volume accompanied by increased OC-mediated bone-resorbing capacity displaying increased acetylation of α-tubulin compared to wild-type (WT) mice. Notably, compared to WT mice, the Parkin-deficient mice displayed increased susceptibility to inflammatory arthritis, reflected by a higher arthritis score and a marked bone loss after arthritis induction using K/BxN serum transfer, but not ovariectomy-induced bone loss. Intriguingly, parkin colocalized with microtubules and parkin-depleted-osteoclast precursor cells (Parkin−/− OCPs) displayed augmented ERK-dependent acetylation of α-tubulin due to failure of interaction with histone deacetylase 6 (HDAC6), which was promoted by IL-1β signaling. The ectopic expression of parkin in Parkin−/− OCPs limited the increase in dentin resorption induced by IL-1β, accompanied by the reduced acetylation of α-tubulin and diminished cathepsin K activity.
Conclusion
These results indicate that a deficiency in the function of parkin caused by a decrease in parkin expression in OCPs under the inflammatory condition may enhance inflammatory bone erosion by altering microtubule dynamics to maintain OC activity.
Funder
National Research Foundation of Korea
Ministry of Science and ICT
Publisher
Springer Science and Business Media LLC
Subject
General Biochemistry, Genetics and Molecular Biology
Reference62 articles.
1. Gnadinger M, Mellinghoff HU, Kaelin-Lang A. Parkinson’s disease and the bones. Swiss Med Wkly. 2011;141:w13154. (Epub 2011/02/18).
2. Raglione LM, Sorbi S, Nacmias B. Osteoporosis and Parkinson’s disease. Clin Cases Mineral Bone Metab. 2011;8(3):16–8 (Epub 2012/03/31).
3. Invernizzi M, Carda S, Viscontini GS, Cisari C. Osteoporosis in Parkinson’s disease. Parkinsonism Relat Disord. 2009;15(5):339–46. https://doi.org/10.1016/j.parkreldis.2009.02.009. (Epub 2009/04/07).
4. Ishizaki F, Harada T, Katayama S, Abe H, Nakamura S. Relationship between osteopenia and clinical characteristics of Parkinson’s disease. Mov Disord. 1993;8(4):507–11. https://doi.org/10.1002/mds.870080416. (Epub 1993/10/01).
5. Ishizaki F, Harada T, Katayama S, Abe H, Nakamura S. Bone changes in Parkinson’s disease. No to shinkei. 1993;45(8):719–24 (Epub 1993/08/01).
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献