Unraveling the 2,3-diketo-l-gulonic acid-dependent and -independent impacts of l-ascorbic acid on somatic cell reprogramming

Author:

Liang Lining,He Meiai,Zhang Yixin,Wang Chenchen,Qin Zhaohui,Li Qian,Yang Tingting,Meng Fei,Zhou Yusheng,Ge Haofei,Song Weining,Chen Shiyu,Dong Linna,Ren Qiwen,Li Changpeng,Guo Lin,Sun Hao,Zhang Wei,Pei Duanqing,Zheng HuiORCID

Abstract

Abstract Background l-ascorbic acid (Asc) plays a pivotal role in regulating various biological processes, including somatic cell reprogramming, through multiple pathways. However, it remains unclear whether Asc regulates reprogramming directly or functions through its metabolites. Results Asc exhibited dual capabilities in promoting reprogramming through both 2,3-diketo-l-gulonic acid (DKG), a key metabolite during Asc degradation, dependent and independent routes. On the one hand, Asc facilitated reprogramming by promoting cell proliferation and inducing the conversion from pre-induced pluripotent stem cells (pre-iPSCs) to iPSCs through DKG-independent pathways. Additionally, Asc triggered mesenchymal-epithelial transition (MET) and activated glycolysis via DKG-dependent mechanisms. Notably, DKG alone activated a non-canonical tricarboxylic acid cycle characterized by increased succinate, fumarate, and malate. Consequently, this shift redirected oxidative phosphorylation toward glycolysis and induced MET. Moreover, owing to its antioxidant capabilities, Asc directly inhibited glycolysis, thereby preventing positive feedback between glycolysis and epithelial-mesenchymal transition, ultimately resulting in a higher level of MET. Conclusion These findings unveil the intricate functions of Asc in the context of reprogramming. This study sheds light on the DKG-dependent and -independent activities of Asc during reprogramming, offering novel insights that may extend the application of Asc to other biological processes.

Funder

National Key R&D Program of China

KNational Key R&D Program of China

National Natural Science Foundation of China

Science and Technology Program of Guangzhou

Science and Technology Planning Project of Guangdong Province

Research Funds from Health@InnoHK Program launched by Innovation Technology Commission

Publisher

Springer Science and Business Media LLC

Subject

General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3