Autophagy in the control and pathogenesis of parasitic infections

Author:

Ghartey-Kwansah GeorgeORCID,Adu-Nti Frank,Aboagye Benjamin,Ankobil Amandus,Essuman Edward Eyipe,Opoku Yeboah Kwaku,Abokyi Samuel,Abu Emmanuel Kwasi,Boampong Johnson Nyarko

Abstract

Abstract Background Autophagy has a crucial role in the defense against parasites. The interplay existing between host autophagy and parasites has varied outcomes due to the kind of host cell and microorganism. The presence of autophagic compartments disrupt a significant number of pathogens and are further cleared by xenophagy in an autolysosome. Another section of pathogens have the capacity to outwit the autophagic pathway to their own advantage. Result To comprehend the interaction between pathogens and the host cells, it is significant to distinguish between starvation-induced autophagy and other autophagic pathways. Subversion of host autophagy by parasites is likely due to differences in cellular pathways from those of ‘classical’ autophagy and that they are controlled by parasites in a peculiar way. In xenophagy clearance at the intracellular level, the pathogens are first ubiquitinated before autophagy receptors acknowledgement, followed by labeling with light chain 3 (LC3) protein. The LC3 in LC3-associated phagocytosis (LAP) is added directly into vacuole membrane and functions regardless of the ULK, an initiation complex. The activation of the ULK complex composed of ATG13, FIP200 and ATG101causes the initiation of host autophagic response. Again, the recognition of PAMPs by conserved PRRs marks the first line of defense against pathogens, involving Toll-like receptors (TLRs). These all important immune-related receptors have been reported recently to regulate autophagy. Conclusion In this review, we sum up recent advances in autophagy to acknowledge and understand the interplay between host and parasites, focusing on target proteins for the design of therapeutic drugs. The target host proteins on the initiation of the ULK complex and PRRs-mediated recognition of PAMPs may provide strong potential for the design of therapeutic drugs against parasitic infections.

Publisher

Springer Science and Business Media LLC

Subject

General Biochemistry, Genetics and Molecular Biology

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3