From nasal to basal: single-cell sequencing of the bursa of Fabricius highlights the IBDV infection mechanism in chickens

Author:

Shah Abid Ullah,Li Yuchen,Ouyang Wei,Wang Zhisheng,Zuo Jinjiao,Shi Song,Yu Qinghua,Lin Jian,Yang Qian

Abstract

Abstract Background Chickens, important food animals and model organisms, are susceptible to many RNA viruses that invade via the nasal cavity. To determine the nasal entry site of the virus and clarify why avians are susceptible to RNA viruses, infectious bursal disease virus (IBDV) was selected because it is a typical avian RNA virus that infects chickens mainly via the nasal route. Results First, we found that IBDV infected the posterior part of the nasal cavity in chickens, which is rich in lymphoid tissue and allows the virus to be easily transferred to the blood. Via the blood circulation, IBDV infected peripheral blood mononuclear cells (PBMCs) and was transferred to the bursa of Fabricius to damage the IgM + B lymphocyte population. Subsequently, the single-cell RNA sequencing (scRNA-seq) results suggested the more detailed response of different bursal cell populations (B cells, epithelial cells, dendritic cells, and fibroblasts) to IBDV. Regarding B cells, IBDV infection greatly decreased the IgM + B cell population but increased the IgA + B cell population in the bursal follicles. In contrast to B cells, bursal epithelial cells, especially basal cells, accumulated a large number of IBDV particles. Furthermore, we found that both innate RNA sensors and interferon-stimulated genes (ISGs) were highly expressed in the IBDV-infected groups, while dicer and ago2 expression was largely blocked by IBDV infection. This result suggests that dicer-related RNA interference (RNAi) might be an effective antiviral strategy for IBDV infection in avian. Conclusion Our study not only comprehensively elaborates on the transmission of airborne IBDV via the intranasal route and establishes the main target cell types for productive IBDV infection but also provides sufficient evidence to explain the cellular antiviral mechanism against IBDV infection. Graphical Abstract

Funder

major research plan

Publisher

Springer Science and Business Media LLC

Subject

General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3