GSTM2 alleviates heart failure by inhibiting DNA damage in cardiomyocytes
-
Published:2023-11-30
Issue:1
Volume:13
Page:
-
ISSN:2045-3701
-
Container-title:Cell & Bioscience
-
language:en
-
Short-container-title:Cell Biosci
Author:
Xu Hongfei,Wang Zhen,Wang Yalin,Pan Shaobo,Zhao Wenting,Chen Miao,Chen Xiaofan,Tao Tingting,Ma Liang,Ni Yiming,Li Weidong
Abstract
Abstract
Background
Heart failure (HF) seriously threatens human health worldwide. However, the pathological mechanisms underlying HF are still not fully clear.
Results
In this study, we performed proteomics and transcriptomics analyses on samples from human HF patients and healthy donors to obtain an overview of the detailed changes in protein and mRNA expression that occur during HF. We found substantial differences in protein expression changes between the atria and ventricles of myocardial tissues from patients with HF. Interestingly, the metabolic state of ventricular tissues was altered in HF samples, and inflammatory pathways were activated in atrial tissues. Through analysis of differentially expressed genes in HF samples, we found that several glutathione S-transferase (GST) family members, especially glutathione S-transferase M2-2 (GSTM2), were decreased in all the ventricular samples. Furthermore, GSTM2 overexpression effectively relieved the progression of cardiac hypertrophy in a transverse aortic constriction (TAC) surgery-induced HF mouse model. Moreover, we found that GSTM2 attenuated DNA damage and extrachromosomal circular DNA (eccDNA) production in cardiomyocytes, thereby ameliorating interferon-I-stimulated macrophage inflammation in heart tissues.
Conclusions
Our study establishes a proteomic and transcriptomic map of human HF tissues, highlights the functional importance of GSTM2 in HF progression, and provides a novel therapeutic target for HF.
Funder
National Natural Science Foundation of China
Publisher
Springer Science and Business Media LLC
Subject
General Biochemistry, Genetics and Molecular Biology
Reference49 articles.
1. Roth GA, Johnson C, Abajobir A, Abd-Allah F, Abera SF, Abyu G, Ahmed M, Aksut B, Alam T, Alam K, Alla F, Alvis-Guzman N, Amrock S, Ansari H, Arnlov J, Asayesh H, Atey TM, Avila-Burgos L, Awasthi A, Banerjee A, Barac A, Barnighausen T, Barregard L, Bedi N, Belay Ketema E, Bennett D, Berhe G, Bhutta Z, Bitew S, Carapetis J, Carrero JJ, Malta DC, Castaneda-Orjuela CA, Castillo-Rivas J, Catala-Lopez F, Choi JY, Christensen H, Cirillo M, Cooper L Jr, Criqui M, Cundiff D, Damasceno A, Dandona L, Dandona R, Davletov K, Dharmaratne S, Dorairaj P, Dubey M, Ehrenkranz R, El Sayed Zaki M, Faraon EJA, Esteghamati A, Farid T, Farvid M, Feigin V, Ding EL, Fowkes G, Gebrehiwot T, Gillum R, Gold A, Gona P, Gupta R, Habtewold TD, Hafezi-Nejad N, Hailu T, Hailu GB, Hankey G, Hassen HY, Abate KH, Havmoeller R, Hay SI, Horino M, Hotez PJ, Jacobsen K, James S, Javanbakht M, Jeemon P, John D, Jonas J, Kalkonde Y, Karimkhani C, Kasaeian A, Khader Y, Khan A, Khang YH, Khera S, Khoja AT, Khubchandani J, Kim D, Kolte D, Kosen S, Krohn KJ, Kumar GA, Kwan GF, Lal DK, Larsson A, Linn S, Lopez A, Lotufo PA, El Razek HMA, et al. Global, regional, and national burden of cardiovascular diseases for 10 causes, 1990 to 2015. J Am Coll Cardiol. 2017;70:1–25. 2. Cvijic M, Rib Y, Danojevic S, Radulescu CI, Nazghaidze N, Vardas P. Heart failure with mildly reduced ejection fraction: from diagnosis to treatment. Gaps and dilemmas in current clinical practice. Heart Fail Rev. 2022;28:767–80. 3. Hagendorff A, Helfen A, Brandt R, Altiok E, Breithardt O, Haghi D, Knierim J, Lavall D, Merke N, Sinning C, Stobe S, Tschope C, Knebel F, Ewen S. Expert proposal to characterize cardiac diseases with normal or preserved left ventricular ejection fraction and symptoms of heart failure by comprehensive echocardiography. Clin Res Cardiol. 2022;112:1–38. 4. Yang D, Liu HQ, Liu FY, Guo Z, An P, Wang MY, Yang Z, Fan D, Tang QZ. Mitochondria in pathological cardiac hypertrophy research and therapy. Front Cardiovasc Med. 2021;8: 822969. 5. Velcea AE, Mihaila Baldea S, Nicula AI, Vinereanu D. The role of multimodality imaging in the selection for implantable cardioverter-defibrillators in heart failure: A narrative review. J Clin Ultrasound. 2022;50:1066–72.
|
|