Comparative analysis of cellular expression pattern of schizophrenia risk genes in human versus mouse cortex

Author:

Zhang Hai-LongORCID,Long Jia-Wen,Han Wei,Wang Jiuzhou,Song Weichen,Lin Guan Ning,Yin Dong-Min

Abstract

Abstract Background Schizophrenia is a common psychiatric disease with high hereditary. The identification of schizophrenia risk genes (SRG) has shed light on its pathophysiological mechanisms. Mouse genetic models have been widely used to study the function of SRG in the brain with a cell type specific fashion. However, whether the cellular expression pattern of SRG is conserved between human and mouse brain is not thoroughly studied. Results We analyzed the single-cell transcription of 180 SRG from human and mouse primary visual cortex (V1). We compared the percentage of glutamatergic, GABAergic and non-neuronal cells that express each SRG between mouse and human V1 cortex. Thirty percent (54/180) of SRG had significantly different expression rate in glutamatergic neurons between mouse and human V1 cortex. By contrast, only 5.6% (10/180) of SRG showed significantly different expression in GABAergic neurons, which is similar with the ratio of SRG (15/180) with species difference in total cell populations. Strikingly, the percentage of non-neuronal cells expressing all SRG are indistinguishable between human and mouse V1 cortex. We further analyzed the biological significance of differentially expressed SRG by gene ontology. The species-different SRG in glutamatergic neurons are highly expressed in dendrite and axon. They are enriched in the biological process of response to stimulus. However, the differentially expressed SRG in GABAergic neurons are enriched in the regulation of organelle organization. Conclusion GABAergic neurons are more conserved in the expression of SRG than glutamatergic neurons while the non-neuronal cells show the species conservation for the expression of all SRG. It should be cautious to use mouse models to study those SRG which show different cellular expression pattern between human and mouse cortex.

Publisher

Springer Science and Business Media LLC

Subject

General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3