Rho family GTPase 1 (RND1), a novel regulator of p53, enhances ferroptosis in glioblastoma

Author:

Sun Qian,Xu Yang,Yuan Fan’en,Qi Yangzhi,Wang Yixuan,Chen Qianxue,Liu BaohuiORCID

Abstract

Abstract Background Ferroptosis is an iron dependent cell death closely associated with p53 signaling pathway and is aberrantly regulated in glioblastoma (GBM), yet the underlying mechanism needs more exploration. Identifying new factors which regulate p53 and ferroptosis in GBM is essential for treatment. Methods Glioma cell growth was evaluated by cell viability assays and colony formation assays. Lipid reactive oxygen species (ROS) assays, lipid peroxidation assays, glutathione assays, and transmission electron microscopy were used to assess the degree of cellular lipid peroxidation of GBM. The mechanisms of RND1 in regulation of p53 signaling were analyzed by RT-PCR, western blot, immunostaining, co-immunoprecipitation, ubiquitination assays and luciferase reporter assays. The GBM‐xenografted animal model was constructed and the tumor was captured by an In Vivo Imaging System (IVIS). Results From the The Cancer Genome Atlas (TCGA) database, we summarized that Rho family GTPase 1 (RND1) expression was downregulated in GBM and predicted a better prognosis of patients with GBM. We observed that RND1 influenced the glioma cell growth in a ferroptosis-dependent manner when GBM cell lines U87 and A172 were treated with Ferrostatin-1 or Erastin. Mechanistically, we found that RND1 interacted with p53 and led to the de-ubiquitination of p53 protein. Furthermore, the overexpression of RND1 promoted the activity of p53-SLC7A11 signaling pathway, therefore inducing the lipid peroxidation and ferroptosis of GBM. Conclusions We found that RND1, a novel controller of p53 protein and a positive regulator of p53 signaling pathway, enhanced the ferroptosis in GBM. This study may shed light on the understanding of ferroptosis in GBM cells and provide new therapeutic ideas for GBM.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

General Biochemistry, Genetics and Molecular Biology

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3