Wind speed retrieval using GNSS-R technique with geographic partitioning

Author:

Li Zheng,Guo Fei,Chen Fade,Zhang Zhiyu,Zhang Xiaohong

Abstract

AbstractIn this paper, the effect of geographical location on Cyclone Global Navigation Satellite System (CYGNSS) observables is demonstrated for the first time. It is found that the observables corresponding to the same wind speed vary with geographic location regularly. Although latitude and longitude information is included in the conventional method, it cannot effectively reduce the errors caused by geographic differences due to the non-monotonic changes of observables with respect to latitude and longitude. Thus, an improved method for Global Navigation Satellite System Reflectometry (GNSS-R) wind speed retrieval that takes geographical differences into account is proposed. The sea surface is divided into different areas for independent wind speed retrieval, and the training set is resampled by considering high wind speed. To balance between the retrieval accuracies of high and low wind speeds, the results with the random training samples and the resampling samples are fused. Compared with the conventional method, in the range of 0–20 m/s, the improved method reduces the Root Mean Square Error (RMSE) of retrieved wind speeds from 1.52 to 1.34 m/s, and enhances the correlation coefficient from 0.86 to 0.90; while in the range of 20–30 m/s, the RMSE decreases from 8.07 to 4.06 m/s, and the correlation coefficient increases from 0.04 to 0.45. Interestingly, the SNR observations are moderately correlated with marine gravities, showing correlation coefficients of 0.5–0.6, which may provide a useful reference for marine gravity retrieval using GNSS-R in the future.

Funder

Science Fund for Creative Research Groups

National Natural Science Foundation of China

Science Fund for Distinguished Young Scholars of Hubei Province

Publisher

Springer Science and Business Media LLC

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3