Functional model modification of precise point positioning considering the time-varying code biases of a receiver

Author:

Zhang Baocheng,Zhao Chuanbao,Odolinski Robert,Liu Teng

Abstract

AbstractPrecise Point Positioning (PPP), initially developed for the analysis of the Global Positing System (GPS) data from a large geodetic network, gradually becomes an effective tool for positioning, timing, remote sensing of atmospheric water vapor, and monitoring of Earth’s ionospheric Total Electron Content (TEC). The previous studies implicitly assumed that the receiver code biases stay constant over time in formulating the functional model of PPP. In this contribution, it is shown this assumption is not always valid and can lead to the degradation of PPP performance, especially for Slant TEC (STEC) retrieval and timing. For this reason, the PPP functional model is modified by taking into account the time-varying receiver code biases of the two frequencies. It is different from the Modified Carrier-to-Code Leveling (MCCL) method which can only obtain the variations of Receiver Differential Code Biases (RDCBs), i.e., the difference between the two frequencies’ code biases. In the Modified PPP (MPPP) model, the temporal variations of the receiver code biases become estimable and their adverse impacts on PPP parameters, such as ambiguity parameters, receiver clock offsets, and ionospheric delays, are mitigated. This is confirmed by undertaking numerical tests based on the real dual-frequency GPS data from a set of global continuously operating reference stations. The results imply that the variations of receiver code biases exhibit a correlation with the ambient temperature. With the modified functional model, an improvement by 42% to 96% is achieved in the Differences of STEC (DSTEC) compared to the original PPP model with regard to the reference values of those derived from the Geometry-Free (GF) carrier phase observations. The medium and long term (1 × 104 to 1.5 × 104 s) frequency stability of receiver clocks are also significantly improved.

Funder

National Natural Science Foundation of China

Scientific Instrument Developing Project of the Chinese Academy of Sciences

Publisher

Springer Science and Business Media LLC

Reference45 articles.

1. Agnew, D. C., & Larson, K. M. (2007). Finding the repeat times of the GPS constellation. GPS Solutions, 11, 71–76.

2. Alkan, R. M., & Öcalan, T. (2013). Usability of the GPS precise point positioning technique in marine applications. Journal of Navigation, 66, 579–588.

3. Axelrad, P., Larson, K., & Jones, B. (2005). Use of the correct satellite repeat period to characterize and reduce site-specific multipath errors. In Proceedings of the ION GNSS, 2005. Citeseer (pp 2638–2648).

4. Banville, S., & Langley, R. B. (2011a). Defining the basis of an "integer-levelling" procedure for estimating slant total electron content. In ION GNSS 2011

5. Banville, S., & Langley, R. B. (2011b). Defining the basis of an integer-levelling procedure for estimating slant total electron content. In Proceedings of the 24th international technical meeting of the satellite division of the institute of navigation (ION GNSS 2011) (pp 2542–2551).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3