High-precision GPS orbit determination by integrating the measurements from regional ground stations and LEO onboard receivers

Author:

Li Kai,Tang Chengpan,Zhou Shanshi,Hu Xiaogong,Zhou Xuhua

Abstract

AbstractHigh-precision Global Navigation Satellite System (GNSS) orbit and clock products are crucial for precise applications. An evenly distributed global network enables continuous tracking for GNSS satellites, while a regional network may result in tracking gaps in the areas where monitoring stations are not deployed. This also means that the orbit determination accuracy based on a regional network is not comparable to that with a global network. Integrating the measurements from regional ground stations and Low Earth Orbit (LEO) satellites onboard receivers is a potential approach for generating GNSS orbit and clock products with centimeter-level accuracy, which is particularly important for BDS and the local commercial providers relying on a regional network. In the integrated Precise Orbit Determination (POD), LEO satellites are used to compensate for the drawback of regional ground stations in the precise orbit and clock determination of GNSS satellites. To validate the role of LEO satellites in the orbit determination with a regional network, 6 International GNSS Service stations around China and 13 LEO satellites from January 20 to 26, 2019, including GRACE-C/D, SWARM-A/B/C, Jason-3, Sentinel-3A/B, and SAT-A/B/C/D/E are selected in this study to perform the integrated POD. The orbit and clock accuracies of GPS and LEO satellites are evaluated by comparison with precise products. The average Root Mean Square (RMS)of GPS orbit errors in the radial (R), along-track (T) and cross-track (N) directions are 2.27 cm, 3.45 cm, and 3.08 cm, respectively, and the clock accuracy is better than 0.15 ns based on a comparison with the final products provided by Center for Orbit Determination in Europe (CODE). The LEO orbit accuracy is better than 2 cm in the R direction, and the position errors are mostly within 4 cm. The results indicate that the integrated POD can generate high-precision orbit and clock products for GPS and LEO satellites based on regional network stations. Finally, the integrated POD products are assessed for Precise Point Positioning (PPP). Simulated kinematic PPP has a comparable performance in terms of the convergence time and positioning accuracy. With more LEO satellites available, the orbit and clock determination accuracy and PPP positioning accuracy can be improved.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3