Models and performance of SBAS and PPP of BDS

Author:

Chen Junping,Zhang YizeORCID,Yu Chao,Wang Ahao,Song Ziyuan,Zhou Jianhua

Abstract

AbstractSatellite Based Augmentation System (SBAS) is one of the services provided by the BeiDou Navigation Satellite System (BDS). It broadcasts four types of differential corrections to improve user application performance. These corrections include the State Space Representation (SSR) based satellite orbit/clock corrections and ionospheric grid corrections, and the Observation Space Representation (OSR) based partition comprehensive corrections. The algorithms generating these SBAS corrections are not introduced in previous researches, and the user SBAS positioning performance with the contribution of BDS-3 has not been evaluated. In this paper, we present the BDS SBAS algorithms for these differential corrections in detail. Four types of Precise Point Positioning (PPP) function models for BDS Dual-Frequency (DF) and Single-Frequency (SF) users using the OSR and SSR parameters are also proposed. One week of data in 2020 is collected at 20 reference stations including the observations of both BeiDou-2 Navigation Satellite System (BDS-2) and BeiDou-3 Navigation Satellite System (BDS-3) satellites, and the PPP under various scenarios are performed using all the datasets and the BDS SBAS broadcast corrections. The results show that the performance of BDS-2/BDS-3 combination is superior to that of BDS-2 only constellation. The positioning errors in Root Mean Square (RMS) for the static DF PPP are better than 8 cm/15 cm in horizontal/vertical directions, while for the static SF PPP are 11 cm/24 cm. In the scenarios of simulated kinematic PPP, three Dimension (3D) positioning errors can reach 0.5 m in less than 10 min for the DF PPP and 30 min for the SF PPP, and the RMSs of the DF and SF PPP are better than 17 cm/21 cm and 20 cm/32 cm in horizontal/vertical directions. In a real-time single- and dual-frequency kinematic positioning test, the positioning errors of all three components can reach 0.5 m within 30 min, and the positioning accuracy after solution convergence in the N, E and U directions is better than 0.3 m.

Funder

national natural science foundation of china

key program of special development funds of zhangjiang national innovation demonstration zone

key technologies research and development program

key r&d program of guangdong province

Publisher

Springer Science and Business Media LLC

Reference27 articles.

1. Averin, S. V., Dvorkin, V. V., & Karutin, S. N. (2007). Russian system for differential correction and monitoring: A concept, present status, and prospects for future. In Proceedings of the 20th international technical meeting of the Satellite Division of The Institute of Navigation (ION GNSS 2007), Fort Worth, TX (pp. 3037–3044) (2007).

2. Chang, Z., Hu, X., Guo, R., Cao, Y., Wu, X., Wang, A., & Dong, E. (2015). Comparison between CNMC and hatch filter & its precision analysis for BDS precise relative positioning. Scientia Sinica Physica, Mechanica & Astronomica, 45(7), 079508. in Chinese.

3. Chen, J., Wang, A., Zhang, Y., Zhou, J., & Yu, C. (2020a). BDS satellite-based augmentation service correction parameters and performance assessment. Remote Sensing, 12(5), 766.

4. Chen, J., Wang, J., Wang, A., Ding, J., & Zhang, Y. (2020b). SHAtropE—A regional gridded ZTD model for China and the surrounding areas. Remote Sensing, 12(1), 165.

5. Chen, J., Yang, S., Zhou, J., Cao, Y., Zhang, Y., Gong, X., & Wang, J. (2017). A pseudo-range and phase combined SBAS differential correction model. Acta Geodaetica Et Cartographica Sinica, 46(5), 537–546. in Chinese.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3