Models and performance of SBAS and PPP of BDS
-
Published:2022-02-28
Issue:1
Volume:3
Page:
-
ISSN:2662-1363
-
Container-title:Satellite Navigation
-
language:en
-
Short-container-title:Satell Navig
Author:
Chen Junping, Zhang YizeORCID, Yu Chao, Wang Ahao, Song Ziyuan, Zhou Jianhua
Abstract
AbstractSatellite Based Augmentation System (SBAS) is one of the services provided by the BeiDou Navigation Satellite System (BDS). It broadcasts four types of differential corrections to improve user application performance. These corrections include the State Space Representation (SSR) based satellite orbit/clock corrections and ionospheric grid corrections, and the Observation Space Representation (OSR) based partition comprehensive corrections. The algorithms generating these SBAS corrections are not introduced in previous researches, and the user SBAS positioning performance with the contribution of BDS-3 has not been evaluated. In this paper, we present the BDS SBAS algorithms for these differential corrections in detail. Four types of Precise Point Positioning (PPP) function models for BDS Dual-Frequency (DF) and Single-Frequency (SF) users using the OSR and SSR parameters are also proposed. One week of data in 2020 is collected at 20 reference stations including the observations of both BeiDou-2 Navigation Satellite System (BDS-2) and BeiDou-3 Navigation Satellite System (BDS-3) satellites, and the PPP under various scenarios are performed using all the datasets and the BDS SBAS broadcast corrections. The results show that the performance of BDS-2/BDS-3 combination is superior to that of BDS-2 only constellation. The positioning errors in Root Mean Square (RMS) for the static DF PPP are better than 8 cm/15 cm in horizontal/vertical directions, while for the static SF PPP are 11 cm/24 cm. In the scenarios of simulated kinematic PPP, three Dimension (3D) positioning errors can reach 0.5 m in less than 10 min for the DF PPP and 30 min for the SF PPP, and the RMSs of the DF and SF PPP are better than 17 cm/21 cm and 20 cm/32 cm in horizontal/vertical directions. In a real-time single- and dual-frequency kinematic positioning test, the positioning errors of all three components can reach 0.5 m within 30 min, and the positioning accuracy after solution convergence in the N, E and U directions is better than 0.3 m.
Funder
national natural science foundation of china key program of special development funds of zhangjiang national innovation demonstration zone key technologies research and development program key r&d program of guangdong province
Publisher
Springer Science and Business Media LLC
Reference27 articles.
1. Averin, S. V., Dvorkin, V. V., & Karutin, S. N. (2007). Russian system for differential correction and monitoring: A concept, present status, and prospects for future. In Proceedings of the 20th international technical meeting of the Satellite Division of The Institute of Navigation (ION GNSS 2007), Fort Worth, TX (pp. 3037–3044) (2007). 2. Chang, Z., Hu, X., Guo, R., Cao, Y., Wu, X., Wang, A., & Dong, E. (2015). Comparison between CNMC and hatch filter & its precision analysis for BDS precise relative positioning. Scientia Sinica Physica, Mechanica & Astronomica, 45(7), 079508. in Chinese. 3. Chen, J., Wang, A., Zhang, Y., Zhou, J., & Yu, C. (2020a). BDS satellite-based augmentation service correction parameters and performance assessment. Remote Sensing, 12(5), 766. 4. Chen, J., Wang, J., Wang, A., Ding, J., & Zhang, Y. (2020b). SHAtropE—A regional gridded ZTD model for China and the surrounding areas. Remote Sensing, 12(1), 165. 5. Chen, J., Yang, S., Zhou, J., Cao, Y., Zhang, Y., Gong, X., & Wang, J. (2017). A pseudo-range and phase combined SBAS differential correction model. Acta Geodaetica Et Cartographica Sinica, 46(5), 537–546. in Chinese.
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|