Abstract
AbstractWhen using Global Navigation Satellite System (GNSS) measurements, Precise Point Positioning with Ambiguity Resolution (PPP-AR) has been a popular substitute for relative positioning in geoscience applications. Compared with the Fractional Cycle Biases (FCB) method, the processing of Integer Recovery Clocks (IRC) products estimate, especially for ambiguity datum fixing, is so complex that its application has been greatly limited. Based on the concept of “carrier range”, we introduce an efficient way to implement the IRC method, termed as the alternative IRC method in this paper. In this method, the fixed ambiguities derived from PPP-AR using the FCB method, and not a fixed-ambiguity datum, are fixed in the IRC products estimate. This greatly reduces the complexity of implementing the IRC method and does not influence the accuracy of positioning. The alternative IRC method outperforms the FCB method by corroborating the consistency of daily positions in nature with international GNSS service weekly solution. To confirm this improvement, global positioning system measurements acquired over a year (2016) from approximately 500 globally distributed stations were processed. The accuracy of IRC products is approximately 20 ps and is highly stable for this year. Moreover, comparing the positioning accuracy of the FCB method to the alternative IRC method, we find that the mean root mean square over the year falls evidently from 2.03 to 1.65 mm at the east component. Therefore, we suggest that the alternative IRC method should be implemented when estimate IRC products.
Funder
National Key R&D Program of China
Publisher
Springer Science and Business Media LLC
Reference32 articles.
1. Altamimi, Z., Rebischung, P., Métivier, L., & Collilieux, X. (2016). ITRF2014: A new release of the International Terrestrial Reference Frame modeling nonlinear station motions. Journal of Geophysical Research: Solid Earth, 121(8), 6109–6131.
2. Bertiger, W., Desai, S. D., Haines, B., Harvey, N., Moore, A. W., Owen, S., et al. (2010). Single receiver phase ambiguity resolution with GPS data. Journal of Geodesy, 84(5), 327–337.
3. Blewitt, G. (2008). Fixed point theorems of GPS carrier phase ambiguity resolution and their application to massive network processing: Ambizap. Journal of Geophysical Research: Solid Earth, 113(B12), B12410.
4. Blewitt, G., Bertiger, W., & Weiss, J. P. (2010). Ambizap3 and GPS carrier-range: A new data type with IGS applications. In Proceedings of IGS workshop and vertical rates. Newcastle: IGS.
5. Calais, E., Han, J., DeMets, C., & Nocquet, J. M. (2006). Deformation of the North American plate interior from a decade of continuous GPS measurements. Journal of Geophysical Research: Solid Earth, 111(B6), B06402.
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献