Multipath mitigation for GPS/Galileo/BDS-3 precise point positioning with overlap-frequency signals

Author:

Geng JianghuiORCID,Zhang Honghai,Li Guangcai,Aoki Yosuke

Abstract

AbstractThe multipath effect is a major Global Navigation Satellite System (GNSS) error source due to its environment-dependent characteristic, which complicates its mitigation process for the high-rate determination of displacements. For instance, Sidereal Filtering (SF) and Multipath Hemispherical Map (MHM) require the observations spanning at least one full cycle of satellite orbit repeat period (e.g., ten days for Galileo navigation satellite system (Galileo) to reproduce the satellite geometry against ground stations. As a consequence, the practicability of SF and MHM is limited due to potential station-surrounding changes over a long period. In this study, we used the overlap-frequency signals on Global Positioning System (GPS) L1/L5, Galileo E1/E5a, and BeiDou-3 Navigation Satellite System (BDS-3) B1C/B2a to construct an interoperable MHM (i.e., MHM_GEC) across constellations to mitigate multipath more efficiently. We thus used 31 days of 1-Hz GPS/Galileo/BDS-3 data at 21 stations in Europe to compare this overlap-frequency MHM with those GNSS-specific MHMs (i.e., MHM_G for GPS, MHM_E for Galileo, and MHM_C for BDS-3), as well as SF. It is confirmed that the multipath effects on overlap-frequency signals are of a high spatial consistency across all GNSS. The mean reduction rate of applying MHM_GEC to GPS, Galileo, and BDS-3 carrier-phase residuals is 25%, 31%, and 28.5%, respectively, which are up to 25 percentage points higher than those of MHM_G, MHM_E, and MHM _C. Furthermore, the MHM_GEC constructed using 5 to 6 days of data can improve the positioning precision by 40%, outperforming the MHM_E, MHM_C, and SF using 10 days of data. Therefore, the interoperable MHM_GEC is more efficient in mitigating multipath effects for high-precision GNSS positioning.

Funder

National Outstanding Youth Science Fund Project of National Natural Science Foundation of China

Major International Joint Research Programme

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3