Author:
Xu Hongjin,Chen Xingyu,Ou Jikun,Yuan Yunbin
Abstract
AbstractHigh-quality spatial atmospheric delay correction information is essential for achieving fast integer ambiguity resolution (AR) in precise positioning. However, traditional real-time precise positioning frameworks (i.e., NRTK and PPP-RTK) depend on spatial low-resolution atmospheric delay correction through the expensive and sparsely distributed CORS network. This results in limited public appeal. With the mass production of autonomous driving vehicles, more cost-effective and widespread data sources can be explored to create spatial high-resolution atmospheric maps. In this study, we propose a new GNSS positioning framework that relies on dual base stations, massive vehicle GNSS data, and crowdsourced atmospheric delay correction maps (CAM). The map is easily produced and updated by vehicles equipped with GNSS receivers in a crowd-sourced way. Specifically, the map consists of between-station single-differenced ionospheric and tropospheric delays. We introduce the whole framework of CAM initialization for individual vehicles, on-cloud CAM maintenance, and CAM-augmented user-end positioning. The map data are collected and preprocessed in vehicles. Then, the crowdsourced data are uploaded to a cloud server. The massive data from multiple vehicles are merged in the cloud to update the CAM in time. Finally, the CAM will augment the user positioning performance. This framework forms a beneficial cycle where the CAM’s spatial resolution and the user positioning performance mutually improve each other. We validate the performance of the proposed framework in real-world experiments and the applied potency at different spatial scales. We highlight that this framework is a reliable and practical positioning solution that meets the requirements of ubiquitous high-precision positioning.
Funder
the National Key R&D Program of China
the National Natural Science Foundation of China
Publisher
Springer Science and Business Media LLC
Reference28 articles.
1. Candès, E. J., Romberg, J., & Tao, T. (2006). Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information. IEEE Transactions on Information Theory, 52(2), 489–509.
2. Cao, S., Lu, X., & Shen, S. (2022). GVINS: Tightly coupled GNSS–visual–inertial fusion for smooth and consistent state estimation. IEEE Transactions on Robotics, 38(4), 2004–2021.
3. Haklay, M. (2010). How good is volunteered geographical information? A comparative study of OpenStreetMap and Ordnance Survey datasets. Environment and Planning B: Planning and Design, 37(4), 682–703.
4. Han, S. (1997). Carrier phase-based long-range GPS kinematic positioning. UNSW Sydney.
5. Huang, D., Feng, W., Li, J., Gong, X., & Li, S. (2022). Grid VRS technique of real time high-precision location-based service. Acta Geodaetica et Cartographica Sinica, 51(8), 1717–1724.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献