Crowdsourcing RTK: a new GNSS positioning framework for building spatial high-resolution atmospheric maps based on massive vehicle GNSS data

Author:

Xu Hongjin,Chen Xingyu,Ou Jikun,Yuan Yunbin

Abstract

AbstractHigh-quality spatial atmospheric delay correction information is essential for achieving fast integer ambiguity resolution (AR) in precise positioning. However, traditional real-time precise positioning frameworks (i.e., NRTK and PPP-RTK) depend on spatial low-resolution atmospheric delay correction through the expensive and sparsely distributed CORS network. This results in limited public appeal. With the mass production of autonomous driving vehicles, more cost-effective and widespread data sources can be explored to create spatial high-resolution atmospheric maps. In this study, we propose a new GNSS positioning framework that relies on dual base stations, massive vehicle GNSS data, and crowdsourced atmospheric delay correction maps (CAM). The map is easily produced and updated by vehicles equipped with GNSS receivers in a crowd-sourced way. Specifically, the map consists of between-station single-differenced ionospheric and tropospheric delays. We introduce the whole framework of CAM initialization for individual vehicles, on-cloud CAM maintenance, and CAM-augmented user-end positioning. The map data are collected and preprocessed in vehicles. Then, the crowdsourced data are uploaded to a cloud server. The massive data from multiple vehicles are merged in the cloud to update the CAM in time. Finally, the CAM will augment the user positioning performance. This framework forms a beneficial cycle where the CAM’s spatial resolution and the user positioning performance mutually improve each other. We validate the performance of the proposed framework in real-world experiments and the applied potency at different spatial scales. We highlight that this framework is a reliable and practical positioning solution that meets the requirements of ubiquitous high-precision positioning.

Funder

the National Key R&D Program of China

the National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3