PPP–RTK functional models formulated with undifferenced and uncombined GNSS observations

Author:

Zhang Baocheng,Hou Pengyu,Zha Jiuping,Liu Teng

Abstract

AbstractTechnique PPP–RTK combines the advantages of both the Precise Point Positioning (PPP) and the Real-Time Kinematic (RTK) positioning. With the emergence of multi-frequency Global Navigation Satellite System (GNSS) observations, it is preferable to formulate PPP–RTK functional models based on original (undifferenced and uncombined) observations. While there exist many variants of the undifferenced and uncombined PPP–RTK models, a unified theoretical framework needs developing to link these variants. In this contribution, we formulate a class of undifferenced and uncombined PPP–RTK functional models in a systematic way and cast them in a unified framework. This framework classifies the models into a code-plus-phase category and a phase-only category. Each category covers a variety of measurement scenarios on the network side, ranging from small-, medium- to large-scale networks. For each scenario, special care has been taken of the distinct ionospheric constraints and the difference between Code Division Multiple Access (CDMA) and Frequency Division Multiple Access (FDMA) signals. The key to systematically formulating these models lies in how to deal with the rank deficiency problems encountered. We opt for the Singularity-basis (S-basis) theory, giving rise to the full-rank observation equations in which the estimable parameters turn out to be the functions of original parameters and those selected as the S-basis. In the sequel, it becomes straightforward to derive for each scenario the user model as it, more or less, amounts to the single-receiver network model. Benefiting from the presented theoretical framework, the relationships and differences between various undifferenced and uncombined PPP–RTK models become clear, which can lead to the better use of these models in a specific situation.

Funder

The National Natural Science Foundation of China

the Key Research and Development Plan of Hubei Province

the Scientific Instrument Developing Project of the Chinese Academy of Sciences

Publisher

Springer Science and Business Media LLC

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3