Efforts towards a low-temperature-sensitive physics package for vapor cell atomic clocks

Author:

Hao QiangORCID,Xue Wenxiang,Xu Feng,Wang Kemu,Yun Peter,Zhang Shougang

Abstract

AbstractStrong environmental dependence is an intractable problem for vapor cell clocks, for which the high-temperature sensitivity of the physics package is considered one of the dominant reasons. In this paper, we report the design and realization of a low-temperature-sensitive physics package for vapor cell clocks. The physics package comprises three layers of magnetic shields, three layers of heating ovens, and the cavity-cell assembly. The cavity-cell assembly employs a compact magnetron-type cavity and a Rb vapor cell sealed with N2-Ar mixed buffer gas. The dependence of the clock frequency on temperature fluctuation is evaluated to be 2 × 10−11/°C. In pursuit of the stable temperature, a three-stage temperature regulator is implemented on the physics package. It adopts a combination of open and closed-loop control to address the problem of significant thermal coupling between the heating ovens. Under a laboratory environment, the measured Hadamard deviation of the temperature variation is 4 × 10−5 °C in 1 day of averaging.

Funder

Young Scientists Fund

West Light Foundation of the Chinese Academy of Sciences

Publisher

Springer Science and Business Media LLC

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A 44-cm3 physics package for the high-performance pulsed optically pumped atomic clock;Review of Scientific Instruments;2024-08-01

2. Integrated pulsed optically pumped Rb atomic clock with frequency stability of 1015;Physical Review Applied;2024-02-01

3. An Integrated Pulsed Optically Pumped Rb Clock;2023 Joint Conference of the European Frequency and Time Forum and IEEE International Frequency Control Symposium (EFTF/IFCS);2023-05-15

4. Coherence of Rabi oscillations with spin exchange;Physical Review Research;2023-01-10

5. Temperature Coefficient Optimization of the Physics Package of Rubidium Atomic Clock;Applied Magnetic Resonance;2021-06-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3