Inversion of surface vegetation water content based on GNSS-IR and MODIS data fusion

Author:

Pan Yalong,Ren Chao,Liang Yueji,Zhang Zhigang,Shi Yajie

Abstract

AbstractObtaining high-precision, long-term sequences of vegetation water content (VWC) is of great significance for assessing surface vegetation growth, soil moisture, and fire risk. In recent years, the global navigation satellite system-interferometric reflection (GNSS-IR) has become a new type of remote sensing technology with low cost, all-weather capability, and a high temporal resolution. It has been widely used in the fields of snow depth, sea level, soil moisture content, and vegetation water content. The normalized microwave reflectance index (NMRI) based on GNSS-IR technology has been proven to be effective in monitoring changes in VWC. This paper considers the advantages and disadvantages of remote sensing technology and GNSS-IR technology in estimating VWC. A point-surface fusion method of GNSS-IR and MODIS data based on the GA–BP neural network is proposed to improve the accuracy of VWC estimation. The vegetation index products (NDVI, GPP, LAI) and the NMRI that unified the temporal and spatial resolution were used as the input and output data of the training model, and the GA–BP neural network was used for training and modeling. Finally, a spatially continuous NMRI product was generated. Taking a particular area of the United States as a research object, experiments show that (1) a neural network can realize the effective fusion of GNSS-IR and MODIS products. By comparing the GA–BP neural network, BP neural network, and multiple linear regression (MLR), the three models fusion effect. The results show that the GA–BP neural network has the best modeling effect, and the r and RMSE between the model estimation result and the reference value are 0.778 and 0.0332, respectively; this network is followed by the BP neural network, in which the r and RMSE are 0.746 and 0.0465, respectively. MLR has the poorest effect, with r and RMSE values of 0.500 and 0.0516, respectively. (2) The spatiotemporal variation in the 16 days/500 m resolution NMRI product obtained by GA–BP neural network fusion is consistent with that in the experimental area. Through the testing of GNSS stations that did not participate in the modeling, the r between the estimated value of the NMRI and the reference value is greater than 0.87, and the RMSE is less than 0.049. Therefore, the method proposed in this paper is optional and effective. The spatially continuous NMRI products obtained by fusion can reflect the changes in VWC in the experimental area more intuitively.

Funder

National Outstanding Youth Science Fund Project of National Natural Science Foundation of China

Foundation for the Author of National Excellent Doctoral Dissertation of the People's Republic of China

Guangxi Young and Middle-aged Teacher Basic Ability Improvement Project

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3