Author:
Li Haojun,Luojie Danzeng,Ding Huimin
Abstract
AbstractIn order to facilitate high-precision and real-time Precise Point Positioning (PPP), the International GNSS (Global Navigation Satellite System) Service (IGS), BDS-3 (BeiDou-3 Navigation Satellite System), and Galileo navigation satellite system (Galileo) have provided real-time satellite clock correction, which is updated at a high-frequency. However, the frequent updates pose the challenges of increasing the computational burden and compromising the timeliness of these correction parameters. To address this issue, an improved Real-Time Service (RTS) method is developed using an extrapolation algorithm and a linear model. The results indicate that a 1 h arc length of the satellite clock correction series is optimal for fitting a linear model of the RTS. With this approach, the 1 h extrapolation results for BDS-3 and Galileo are superior to 0.09 ns. Moreover, when these model coefficients are transmitted and updated at the intervals of 1, 2, 5, and 10 min, the corresponding PPP can converge at the centimeter-level. It is evident that these improved RTS methods outperform the current approach with high-frequency interval transmission, as they effectively mitigate the challenges associated with maintaining the timeliness of correction parameters.
Funder
National Natural Science Foundation of China
Fundamental Research Funds for the Central Universities
Publisher
Springer Science and Business Media LLC
Subject
Electrical and Electronic Engineering,Aerospace Engineering,Signal Processing
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献