Genomic organization and gene expression of the multiple globins in Atlantic cod: conservation of globin-flanking genes in chordates infers the origin of the vertebrate globin clusters

Author:

Wetten Ola F,Nederbragt Alexander J,Wilson Robert C,Jakobsen Kjetill S,Edvardsen Rolf B,Andersen Øivind

Abstract

Abstract Background The vertebrate globin genes encoding the α- and β-subunits of the tetrameric hemoglobins are clustered at two unlinked loci. The highly conserved linear order of the genes flanking the hemoglobins provides a strong anchor for inferring common ancestry of the globin clusters. In fish, the number of α-β-linked globin genes varies considerably between different sublineages and seems to be related to prevailing physico-chemical conditions. Draft sequences of the Atlantic cod genome enabled us to determine the genomic organization of the globin repertoire in this marine species that copes with fluctuating environments of the temperate and Arctic regions. Results The Atlantic cod genome was shown to contain 14 globin genes, including nine hemoglobin genes organized in two unlinked clusters designated β5-α1-β1-α4 and β3-β4-α2-α3-β2. The diverged cod hemoglobin genes displayed different expression levels in adult fish, and tetrameric hemoglobins with or without a Root effect were predicted. The novel finding of maternally inherited hemoglobin mRNAs is consistent with a potential role played by fish hemoglobins in the non-specific immune response. In silico analysis of the six teleost genomes available showed that the two α-β globin clusters are flanked by paralogs of five duplicated genes, in agreement with the proposed teleost-specific duplication of the ancestral vertebrate globin cluster. Screening the genome of extant urochordate and cephalochordate species for conserved globin-flanking genes revealed linkage of RHBDF1, MPG and ARHGAP17 to globin genes in the tunicate Ciona intestinalis, while these genes together with LCMT are closely positioned in amphioxus (Branchiostoma floridae), but seem to be unlinked to the multiple globin genes identified in this species. Conclusion The plasticity of Atlantic cod to variable environmental conditions probably involves the expression of multiple globins with potentially different properties. The interspecific difference in number of fish hemoglobin genes contrasts with the highly conserved synteny of the flanking genes. The proximity of globin-flanking genes in the tunicate and amphioxus genomes resembles the RHBDF1-MPG-α-globin-ARHGAP17-LCMT linked genes in man and chicken. We hypothesize that the fusion of the three chordate linkage groups 3, 15 and 17 more than 800 MYA led to the ancestral vertebrate globin cluster during a geological period of increased atmospheric oxygen content.

Publisher

Springer Science and Business Media LLC

Subject

Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3