Author:
Paffetti Donatella,Vettori Cristina,Caramelli David,Vernesi Cristiano,Lari Martina,Paganelli Arturo,Paule Ladislav,Giannini Raffaello
Abstract
Abstract
Background
Phylogeographic analyses on the Western Euroasiatic Fagus taxa (F. orientalis, F. sylvatica, F. taurica and F. moesiaca) is available, however, the subdivision of Fagus spp. is unresolved and there is no consensus on the phylogeny and on the identification (both with morphological than molecular markers) of Fagus Eurasiatic taxa.
For the first time molecular analyses of ancient pollen, dated at least 45,000 years ago, were used in combination with the phylogeny analysis on current species, to identify the Fagus spp. present during the Last Interglacial period in Italy.
In this work we aim at testing if the trn L-trn F chloroplast DNA (cpDNA) region, that has been previously proved efficient in discriminating different Quercus taxa, can be employed in distinguishing the Fagus species and in identifying the ancient pollen.
Results
86 populations from 4 Western Euroasistic taxa were sampled, and sequenced for the trn L-trn F region to verify the efficiency of this cpDNA region in identifying the Fagus spp.. Furthermore, Fagus crenata (2 populations), Fagus grandifolia (2 populations), Fagus japonica, Fagus hayatae, Quercus species and Castanea species were analysed to better resolve the phylogenetic inference.
Our results show that this cpDNA region harbour some informative sites that allow to infer relationships among the species within the Fagaceae family. In particular, few specific and fixed mutations were able to discriminate and identify all the different Fagus species.
Considering a short fragment of 176 base pairs within the trn L intron, 2 transversions were found able in distinguishing the F. orientalis complex taxa (F. orientalis, F. taurica and F. moesiaca) from the remaining Fagus spp. (F. sylvatica, F. japonica, F. hayataea, F. crenata and F. grandifolia). This permits to analyse this fragment also in ancient samples, where DNA is usually highly degraded.
The sequences data indicate that the DNA recovered from ancient pollen belongs to the F. orientalis complex since it displays the informative sites characteristic of this complex.
Conclusion
The ancient DNA sequences demonstrate for the first time that, in contrast to current knowledge based on palynological and macrofossil data, the F. orientalis complex was already present during the Tyrrhenian period in what is now the Venice lagoon (Italy).
This is a new and important insight considering that nowadays West Europe is not the natural area of Fagus orientalis complex, and up to now nobody has hypothesized the presence during the Last Interglacial period of F. orientalis complex in Italy.
Publisher
Springer Science and Business Media LLC
Subject
Ecology, Evolution, Behavior and Systematics
Reference79 articles.
1. Jones JH: Evolution of the Fagaceae: the implications of foliar features. Ann Mo Bot Gard. 1986, 73: 228-275. 10.2307/2399112.
2. Crepet WL: History and implications of the early North American fossil record of Fagaceae. "Higher" Hamamelidae. Evolution systematics and fossil history of the Hamamelidae. Edited by: Crane PR, Blackmore S. 1989, Clarendon: Oxford, 2: 23-44.
3. Manchester SR: Biogeographical relationships of North American Tertiary floras. Ann Mo Bot Gard. 1999, 86: 472-522. 10.2307/2666183.
4. Marchesoni V: Lineamenti paleobotanici dell'Interglaciale Riss-Würm nella Pianura Padana. N Giorn Bot Ital, n s. 1960, 67: 306-311.
5. Mancini F: Le variazioni climatiche in Italia alla fine del Riss dell'Olocene (Tentativo d'ordinamento cronologico). Boll Soc Geolog Ital. 1962, 81: 1-36.
Cited by
38 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献