Author:
Rochet Juliette,Moreau Pierre-Arthur,Manzi Sophie,Gardes Monique
Abstract
Abstract
Background
Mycorrhizal fungi form intimate associations with their host plants that constitute their carbon resource and habitat. Alnus spp. (Betulaceae) are known to host an exceptional species-poor and specialized ectomycorrhizal (ECM) fungal community compared to other tree species, but the host-specificity pattern and its significance in terms of fungal diversification and speciation remain poorly documented. The degree of parallel speciation, host switching, and patterns of biogeography were explored in the historical associations between alders and three ECM taxa of Basidiomycetes: Alnicola (Agaricales), Alpova (Boletales), and Lactarius (Russulales). The aim was to develop an evolutionary framework on host specificity and diversification of Basidiomycetes in this highly specialized plant-fungus symbiosis.
Results
Sporocarps of Alnicola (220), Lactarius (61) and Alpova (29) were collected from stands of the four European alder species (A. alnobetula including the endemic subsp. suaveolens in Corsica, A. cordata, A. glutinosa, A. incana) in Western Europe (mainly in France and Austria), from 1995 to 2009. Specimens were morphologically identified to the species level. From these, 402 sequences of four DNA regions (ITS, rpb2, gpd, and the V9 domain of the mit-SSU rDNA) were successfully obtained and analyzed in addition with 89 sequences available in GenBank and UNITE databases. Phylogenetic analyses were conducted on all sequence data sets (individual and combined) using maximum likelihood reconstruction and Bayesian inference. Fungal phylogenies are compared and discussed in relation to the host, with a focus on species boundaries by associating taxonomic, systematic and molecular information.
Conclusions
Patterns of host specificity and phylogenies of Alnicola and Lactarius suggest coevolution as a basal factor of speciation in relation with the subgeneric diversification of Alnus, possibly due to the very selective pressure of the host. A second element of the historical associations between Alnus and its fungal symbionts is a host-dependent speciation (radiation without host change), here observed in Alnicola and Alpova in relation with Alnus subgen. Alnus. Finally host shifts from Alnus subgen. Alnus to A. alnobetula are found in most lineages of Alnicola (at least four times), Alpova (twice) and Lactarius (once), but they do not represent such a common event as could be expected by geographic proximity of trees from the two subgenera. However, active or very recent host extensions clearly occurred in Corsica, where some fungi usually associated with Alnus glutinosa on mainland Europe locally extend there to A. alnobetula subsp. suaveolens without significant genetic or morphological deviation.
Publisher
Springer Science and Business Media LLC
Subject
Ecology, Evolution, Behavior and Systematics
Reference75 articles.
1. Smith SE, Read DJ: Mycorrhizal Symbiosis. 2008, London: Academic Press, 3
2. Molina R, Massicotte H, Trappe JM: Specificity phenomena in mycorrhizal symbioses: community-ecological consequences and practical implications. Mycorrhizal symbiosis, an integrative plant-fungal process. Edited by: Allen MF. 1992, New York: Chapman and Hall, 357-423.
3. Roy M, Dubois MP, Proffit M, Vincenot L, Desmaris E, Selosse MA: Evidence from population genetics that the ectomycorrhizal basidiomycete Laccaria amethystina is an actual multihost symbiont. Mol Ecol. 2008, 17: 2825-2838. 10.1111/j.1365-294X.2008.03790.x.
4. Kretzer A, Li Y, Szaro T, Bruns TD: Internal transcribed spacer sequences from 38 recognized species of Suillus sensu lato: phylogenetic and taxonomic implications. Mycologia. 1996, 88: 776-785. 10.2307/3760972.
5. Bruns TD, Bidartondo M, Taylor DL: Host specificity in ectomycorrhizal communities: what do exceptions tell us?. Integ Comp Biol. 2002, 42: 352-359. 10.1093/icb/42.2.352.
Cited by
75 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献