A phylogenetic analysis of the grape genus (Vitis L.) reveals broad reticulation and concurrent diversification during neogene and quaternary climate change

Author:

Wan Yizhen,Schwaninger Heidi R,Baldo Angela M,Labate Joanne A,Zhong Gan-Yuan,Simon Charles J

Abstract

Abstract Background Grapes are one of the most economically important fruit crops. There are about 60 species in the genus Vitis. The phylogenetic relationships among these species are of keen interest for the conservation and use of this germplasm. We selected 309 accessions from 48 Vitis species,varieties, and outgroups, examined ~11 kb (~3.4 Mb total) of aligned nuclear DNA sequences from 27 unlinked genes in a phylogenetic context, and estimated divergence times based on fossil calibrations. Results Vitis formed a strongly supported clade. There was substantial support for species and less for the higher-level groupings (series). As estimated from extant taxa, the crown age of Vitis was 28 Ma and the divergence of subgenera (Vitis and Muscadinia) occurred at ~18 Ma. Higher clades in subgenus Vitis diverged 16 – 5 Ma with overlapping confidence intervals, and ongoing divergence formed extant species at 12 – 1.3 Ma. Several species had species-specific SNPs. NeighborNet analysis showed extensive reticulation at the core of subgenus Vitis representing the deeper nodes, with extensive reticulation radiating outward. Fitch Parsimony identified North America as the origin of the most recent common ancestor of extant Vitis species. Conclusions Phylogenetic patterns suggested origination of the genus in North America, fragmentation of an ancestral range during the Miocene, formation of extant species in the late Miocene-Pleistocene, and differentiation of species in the context of Pliocene-Quaternary tectonic and climatic change. Nuclear SNPs effectively resolved relationships at and below the species level in grapes and rectified several misclassifications of accessions in the repositories. Our results challenge current higher-level classifications, reveal the abundance of genetic diversity in the genus that is potentially available for crop improvement, and provide a valuable resource for species delineation, germplasm conservation and use.

Publisher

Springer Science and Business Media LLC

Subject

Ecology, Evolution, Behavior and Systematics

Reference134 articles.

1. Food and Agriculture Organization of the United Nations: FAO. [http://faostat.fao.org]

2. Reisch BI, Pratt C: Grapes. Fruit breeding. Edited by: Janick J, Moore JN. 1996, New York: Wiley, 297-369. 2

3. Comeaux BL, Nesbitt WB, Fantz PR: Taxonomy of the native grapes of North Carolina. Castanea. 1987, 52: 197-215.

4. Galet P: Cepages et vignobles de France. Tome 1 Les vignes Americaines. 1988, Dehan: Montpellier

5. Moore MO: Classification and systematics of Eastern North American Vitis L. (Vitaceae) north of Mexico. Sida. 1991, 14: 339-367.

Cited by 123 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3