Author:
Park Hyun Jung,Jin Guohua,Nakhleh Luay
Abstract
Abstract
Background
Maximum parsimony is one of the most commonly used criteria for reconstructing phylogenetic trees. Recently, Nakhleh and co-workers extended this criterion to enable reconstruction of phylogenetic networks, and demonstrated its application to detecting reticulate evolutionary relationships. However, one of the major problems with this extension has been that it favors more complex evolutionary relationships over simpler ones, thus having the potential for overestimating the amount of reticulation in the data. An ad hoc solution to this problem that has been used entails inspecting the improvement in the parsimony length as more reticulation events are added to the model, and stopping when the improvement is below a certain threshold.
Results
In this paper, we address this problem in a more systematic way, by proposing a nonparametric bootstrap-based measure of support of inferred reticulation events, and using it to determine the number of those events, as well as their placements. A number of samples is generated from the given sequence alignment, and reticulation events are inferred based on each sample. Finally, the support of each reticulation event is quantified based on the inferences made over all samples.
Conclusions
We have implemented our method in the NEPAL software tool (available publicly at http://bioinfo.cs.rice.edu/), and studied its performance on both biological and simulated data sets. While our studies show very promising results, they also highlight issues that are inherently challenging when applying the maximum parsimony criterion to detect reticulate evolution.
Publisher
Springer Science and Business Media LLC
Subject
Ecology, Evolution, Behavior and Systematics
Reference27 articles.
1. Gemeinholzer B: Phylogenetic networks. Analysis of Biological Networks. Edited by: Junker BH, Schreiber F. 2008, John Wiley and Sons Ltd, 255-282. full_text.
2. Huson D: Split networks and Reticulate Networks. Reconstructing Evolution, New Mathematical and Computational Advances. Edited by: Gascuel O, Steel M. 2007, Oxford University Press, 247-276.
3. Huson D, Bryant D: Application of Phylogenetic Networks in Evolutionary Studies. Molecular Biology and Evolution. 2006, 23 (2): 254-267. 10.1093/molbev/msj030.
4. Linder C, Moret BE, Nakhleh L, Warnow T: Network (Reticulate) Evolution: Biology, Models, and Algorithms. The Pacific Symposium on Biocomputing. 2004
5. Makarenkov V, Kevorkov D, Legendre P: Phylogenetic Network Construction Approaches. Applied Mycology and Biotechnology. 2006, 61-97. full_text.
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献