Viral quasispecies profiles as the result of the interplay of competition and cooperation

Author:

Arbiza Juan,Mirazo Santiago,Fort Hugo

Abstract

Abstract Background Viral quasispecies can be regarded as a swarm of genetically related mutants. A common approach employed to describe viral quasispecies is by means of the quasispecies equation (QE). However, a main criticism of QE is its lack of frequency-dependent selection. This can be overcome by an alternative formulation for the evolutionary dynamics: the replicator-mutator equation (RME). In turn, a problem with the RME is how to quantify the interaction coefficients between viral variants. Here, this is addressed by adopting an ecological perspective and resorting to the niche theory of competing communities, which assumes that the utilization of resources primarily determines ecological segregation between competing individuals (the different viral variants that constitute the quasispecies). This provides a theoretical framework to estimate quantitatively the fitness landscape. Results Using this novel combination of RME plus the ecological concept of niche overlapping for describing a quasispecies we explore the population distributions of viral variants that emerge, as well as the corresponding dynamics. We observe that the population distribution requires very long transients both to A) reach equilibrium and B) to show a clear dominating master sequence. Based on different independent and recent experimental evidence, we find that when some cooperation or facilitation between variants is included in appropriate doses we can solve both A) and B). We show that a useful quantity to calibrate the degree of cooperation is the Shannon entropy. Conclusions In order to get a typical quasispecies profile, at least within the considered mathematical approach, it seems that pure competition is not enough. Some dose of cooperation among viral variants is needed. This has several biological implications that might contribute to shed light on the mechanisms operating in quasispecies dynamics and to understand the quasispecies as a whole entity.

Publisher

Springer Science and Business Media LLC

Subject

Ecology, Evolution, Behavior and Systematics

Reference24 articles.

1. Eigen M, Schuster P: The Hypercycle: a principle of natural self-organization. 1979, Springer-Verlag New York

2. Domingo E, Escarmis C, Sevilla N, Moya A, Elena SF, Quer J, Novella IS, Holland J: Basic concepts in RNA virus evolution. FASEB Jour. 1996, 10: 859-864.

3. Eigen M, Biebricher CK: Sequence space and quasispecies distribution. RNA Genetics. Edited by: Domingo E, Holland J, Ahiquist P. 1998, CRC Press. Inc., Boca Raton, Florida, 3: 211-245.

4. Clarke D, Duarte E, Elena S, Moya A, Domingo E, Holland J: The red queen reigns in the kingdom of RNA viruses. PNAS. 1994, 91: 4821-4824. 10.1073/pnas.91.11.4821.

5. May RM: Stability and complexity in model ecosystems. 1974, Princeton; Princeton University Press

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3