Horizontally acquired divergent O-antigen contributes to escape from cross-immunity in the classical bordetellae

Author:

Hester Sara E,Park Jihye,Goodfield Laura L,Feaga Heather A,Preston Andrew,Harvill Eric T

Abstract

Abstract Background Horizontal gene transfer (HGT) allows for rapid spread of genetic material between species, increasing genetic and phenotypic diversity. Although HGT contributes to adaptation and is widespread in many bacteria, others show little HGT. This study builds on previous work to analyze the evolutionary mechanisms contributing to variation within the locus encoding a prominent antigen of the classical bordetellae. Results We observed amongst classical bordetellae discrete regions of the lipopolysaccharide O-antigen locus with higher sequence diversity than the genome average. Regions of this locus had less than 50% sequence similarity, low dN/dS ratios and lower GC content compared to the genome average. Additionally, phylogenetic tree topologies based on genome-wide SNPs were incongruent with those based on genes within these variable regions, suggesting portions of the O-antigen locus may have been horizontally transferred. Furthermore, several predicted recombination breakpoints correspond with the ends of these variable regions. To examine the evolutionary forces that might have selected for this rare example of HGT in bordetellae, we compared in vitro and in vivo phenotypes associated with different O-antigen types. Antibodies against O1- and O2-serotypes were poorly cross-reactive, and did not efficiently kill or mediate clearance of alternative O-type bacteria, while a distinct and poorly immunogenic O-antigen offered no protection against colonization. Conclusions This study suggests that O-antigen variation was introduced to the classical bordetellae via HGT through recombination. Additionally, genetic variation may be maintained within the O-antigen locus because it can provide escape from immunity to different O-antigen types, potentially allowing for the circulation of different Bordetella strains within the same host population.

Publisher

Springer Science and Business Media LLC

Subject

Ecology, Evolution, Behavior and Systematics

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3