Does thermoregulatory behavior maximize reproductive fitness of natural isolates of Caenorhabditis elegans?

Author:

Anderson Jennifer L,Albergotti Lori,Ellebracht Barbara,Huey Raymond B,Phillips Patrick C

Abstract

Abstract Background A central premise of physiological ecology is that an animal's preferred body temperature should correspond closely with the temperature maximizing performance and Darwinian fitness. Testing this co-adaptational hypothesis has been problematic for several reasons. First, reproductive fitness is the appropriate measure, but is difficult to measure in most animals. Second, no single fitness measure applies to all demographic situations, complicating interpretations. Here we test the co-adaptation hypothesis by studying an organism (Caenorhabditis elegans) in which both fitness and thermal preference can be reliably measured. Results We find that natural isolates of C. elegans display a range of mean thermal preferences and also vary in their thermal sensitivities for fitness. Hot-seeking isolates CB4854 and CB4857 prefer temperatures that favor population growth rate (r), whereas the cold-seeking isolate CB4856 prefers temperatures that favor Lifetime Reproductive Success (LRS). Conclusions Correlations between fitness and thermal preference in natural isolates of C. elegans are driven primarily by isolate-specific differences in thermal preference. If these differences are the result of natural selection, then this suggests that the appropriate measure of fitness for use in evolutionary ecology studies might differ even within species, depending on the unique ecological and evolutionary history of each population.

Publisher

Springer Science and Business Media LLC

Subject

Ecology, Evolution, Behavior and Systematics

Reference84 articles.

1. Fry FEJ: Effects of the environment on animal activity. Univ Toronto Stud, Biol Ser no 55. 1947, 68: 1-62.

2. Bennett AF: The thermal dependence of lizard behaviour. Anim Behav. 1980, 28: 752-762. 10.1016/S0003-3472(80)80135-7.

3. Huey RB, Berrigan D: Temperature, demography, and ectotherm fitness. Am Nat. 2001, 158: 204-210. 10.1086/321314.

4. Angilletta MJ: Thermal Adaptation: A Theoretical and Empirical Synthesis. 2009, Oxford: Oxford University Press

5. Dell AI, Pawar S, Savage VM: Systematic variation in the temperature dependence of physiological and ecological traits. Proc Natl Acad Sci USA. 2011

Cited by 53 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3