The 5S rDNA family evolves through concerted and birth-and-death evolution in fish genomes: an example from freshwater stingrays

Author:

Pinhal Danillo,Yoshimura Tatiana S,Araki Carlos S,Martins Cesar

Abstract

Abstract Background Ribosomal 5S genes are well known for the critical role they play in ribosome folding and functionality. These genes are thought to evolve in a concerted fashion, with high rates of homogenization of gene copies. However, the majority of previous analyses regarding the evolutionary process of rDNA repeats were conducted in invertebrates and plants. Studies have also been conducted on vertebrates, but these analyses were usually restricted to the 18S, 5.8S and 28S rRNA genes. The recent identification of divergent 5S rRNA gene paralogs in the genomes of elasmobranches and teleost fishes indicate that the eukaryotic 5S rRNA gene family has a more complex genomic organization than previously thought. The availability of new sequence data from lower vertebrates such as teleosts and elasmobranches enables an enhanced evolutionary characterization of 5S rDNA among vertebrates. Results We identified two variant classes of 5S rDNA sequences in the genomes of Potamotrygonidae stingrays, similar to the genomes of other vertebrates. One class of 5S rRNA genes was shared only by elasmobranches. A broad comparative survey among 100 vertebrate species suggests that the 5S rRNA gene variants in fishes originated from rounds of genome duplication. These variants were then maintained or eliminated by birth-and-death mechanisms, under intense purifying selection. Clustered multiple copies of 5S rDNA variants could have arisen due to unequal crossing over mechanisms. Simultaneously, the distinct genome clusters were independently homogenized, resulting in the maintenance of clusters of highly similar repeats through concerted evolution. Conclusions We believe that 5S rDNA molecular evolution in fish genomes is driven by a mixed mechanism that integrates birth-and-death and concerted evolution.

Publisher

Springer Science and Business Media LLC

Subject

Ecology, Evolution, Behavior and Systematics

Reference96 articles.

1. Long EO, Dawid IB: Repeated genes in Eukaryotes. Annu Rev Biochem. 1980, 49: 727-764. 10.1146/annurev.bi.49.070180.003455.

2. Drouin G, Moniz de Sá M: The concerted evolution of 5S ribosomal genes linked to the repeat units of other multigene families. Mol Biol Evol. 1995, 12: 481-493.

3. Arnheim N, Krystal M, Schmickel R, Wilson G, Ryder O, Zimmer E: Molecular evidence for genetic exchanges among ribosomal genes on nonhomologous chromosomes in man and apes. Proc Natl Acad Sci USA. 1983, 77: 7323-7327.

4. Dover G: Molecular drive: a cohesive mode of species evolution. Nature. 1982, 299: 111-116. 10.1038/299111a0.

5. Arnheim N: Concerted evolution of multigene families. Evolution of genes and proteins. Edited by: Nei M and Koehn RK. 1983, Sunderland: Sinauer, 38-61.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3