Ecological partitioning and diversity in tropical planktonic foraminifera

Author:

Seears Heidi A,Darling Kate F,Wade Christopher M

Abstract

Abstract Background Ecological processes are increasingly being viewed as an important mode of diversification in the marine environment, where the high dispersal potential of pelagic organisms, and a lack of absolute barriers to gene flow may limit the occurrence of allopatric speciation through vicariance. Here we focus on the potential role of ecological partitioning in the diversification of a widely distributed group of marine protists, the planktonic foraminifera. Sampling was conducted in the tropical Arabian Sea, during the southwest (summer) monsoon, when pronounced environmental conditions result in a strong disparity in temperature, salinity and productivity between distinct northern and southern water masses. Results We uncovered extensive genetic diversity within the Arabian Sea planktonic foraminifera, identifying 13 morphospecies, represented by 20 distinct SSU rRNA genetic types. Several morphospecies/genetic types displayed non-random biogeographical distributions, partitioning between the northern and southern water masses, giving a strong indication of independent ecological adaptations. Conclusions We propose sea-surface primary productivity as the main factor driving the geographical segregation of Arabian Sea planktonic foraminifera, during the SW monsoon, with variations in symbiotic associations possibly playing a role in the specific ecological adaptations observed. Our findings suggest that ecological partitioning could be contributing to the high levels of 'cryptic' genetic diversity observed within the planktonic foraminifera, and support the view that ecological processes may play a key role in the diversification of marine pelagic organisms.

Publisher

Springer Science and Business Media LLC

Subject

Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3