Author:
Tejero Héctor,Marín Arturo,Montero Francisco
Abstract
Abstract
Background
The quasispecies model is a general model of evolution that is generally applicable to replication up to high mutation rates. It predicts that at a sufficiently high mutation rate, quasispecies with higher mutational robustness can displace quasispecies with higher replicative capacity, a phenomenon called "survival of the flattest". In some fitness landscapes it also predicts the existence of a maximum mutation rate, called the error threshold, beyond which the quasispecies enters into error catastrophe, losing its genetic information. The aim of this paper is to study the relationship between survival of the flattest and the transition to error catastrophe, as well as the connection between these concepts and natural selection.
Results
By means of a very simplified model, we show that the transition to an error catastrophe corresponds to a value of zero for the selective coefficient of the mutant phenotype with respect to the master phenotype, indicating that transition to the error catastrophe is in this case similar to the selection of a more robust species. This correspondence has been confirmed by considering a single-peak landscape in which sequences are grouped with respect to their Hamming distant from the master sequence. When the robustness of a classe is changed by modification of its quality factor, the distribution of the population changes in accordance with the new value of the robustness, although an error catastrophe can be detected at the same values as in the general case. When two quasispecies of different robustness competes with one another, the entry of one of them into error catastrophe causes displacement of the other, because of the greater robustness of the former. Previous works are explicitly reinterpreted in the light of the results obtained in this paper.
Conclusions
The main conclusion of this paper is that the entry into error catastrophe is a specific case of survival of the flattest acting on phenotypes that differ in the trade-off between replicative ability and mutational robustness. In fact, entry into error catastrophe occurs when the mutant phenotype acquires a selective advantage over the master phenotype. As both entry into error catastrophe and survival of the flattest are caused by natural selection when mutation rate is increased, we propose differentiating between them by the level of selection at which natural selection acts. So we propose to consider the transition to error catastrophe as a phenomenon of intra-quasispecies selection, and survival of the flattest as a phenomenon of inter-quasispecies selection.
Publisher
Springer Science and Business Media LLC
Subject
Ecology, Evolution, Behavior and Systematics
Reference68 articles.
1. Eigen M: Self-organization of matter and the evolution of biological macromolecules. Naturwissenschaften. 1971, 58 (10): 465-523. 10.1007/BF00623322.
2. Schuster P, Stadler PF: Early replicons: Origin and evolution. Origin and Evolution of Viruses. Edited by: Domingo E, Parrish C, Holland JJ. 2008, Oxford: Elsevier, 1-42. full_text.
3. Domingo E, Martin V, Perales C, Grande-Perez A, Garcia-Arriaza J, Arias A: Viruses as quasispecies: biological implications. Curr Top Microbiol Immunol. 2006, 299: 51-82. full_text.
4. Solé RV, Deisboeck TS: An error catastrophe in cancer?. J Theor Biol. 2004, 228 (1): 47-54.
5. Kamp C, Wilke CO, Adami C, Bornholdt S: Viral evolution under the pressure of an adaptive immune system: optimal mutation rates for viral escape. Complexity. 2002, 8 (2): 28-33. 10.1002/cplx.10067.
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献