Author:
Perina Alejandra,Seoane David,González-Tizón Ana M,Rodríguez-Fariña Fernanda,Martínez-Lage Andrés
Abstract
Abstract
Background
The 5S ribosomal DNA (5S rDNA) is organized in tandem arrays with repeat units that consist of a transcribing region (5S) and a variable nontranscribed spacer (NTS), in higher eukaryotes. Until recently the 5S rDNA was thought to be subject to concerted evolution, however, in several taxa, sequence divergence levels between the 5S and the NTS were found higher than expected under this model. So, many studies have shown that birth-and-death processes and selection can drive the evolution of 5S rDNA. In analyses of 5S rDNA evolution is found several 5S rDNA types in the genome, with low levels of nucleotide variation in the 5S and a spacer region highly divergent. Molecular organization and nucleotide sequence of the 5S ribosomal DNA multigene family (5S rDNA) were investigated in three Pollicipes species in an evolutionary context.
Results
The nucleotide sequence variation revealed that several 5S rDNA variants occur in Pollicipes genomes. They are clustered in up to seven different types based on differences in their nontranscribed spacers (NTS). Five different units of 5S rDNA were characterized in P. pollicipes and two different units in P. elegans and P. polymerus. Analysis of these sequences showed that identical types were shared among species and that two pseudogenes were present. We predicted the secondary structure and characterized the upstream and downstream conserved elements. Phylogenetic analysis showed an among-species clustering pattern of 5S rDNA types.
Conclusions
These results suggest that the evolution of Pollicipes 5S rDNA is driven by birth-and-death processes with strong purifying selection.
Publisher
Springer Science and Business Media LLC
Subject
Ecology, Evolution, Behavior and Systematics
Reference55 articles.
1. Ferreira IA, Oliveira C, Venere PC, Galetti PM, Martins C: 5S rDNA variation and its phylogenetic inference in the genus Leporinus (Characiformes: Anostomidae). Genetica. 2007, 129: 253-257. 10.1007/s10709-006-0005-6.
2. Campo D, Machado-Schiaffino G, Horreo JL, Garcia-Vazquez E: Molecular organization and evolution of 5S rDNA in the genus Merluccius and their phylogenetic implications. J Mol Evol. 2009, 68: 208-216. 10.1007/s00239-009-9207-8.
3. Fujiwara M, Inafuku J, Takeda A, Watanabe A, Fujiwara A, Kohno S, et al: Molecular organization of 5S rDNA in bitterlings (Cyprynidae). Genetica. 2009, 135: 355-365. 10.1007/s10709-008-9294-2.
4. Martins C, Wasko AP: Organization and evolution of 5S ribosomal DNA in the fish genome. Focus on genome research. Edited by: Williams CL. 2004, Nova Science Publishers, Hauppauge, N.Y, 335-363.
5. Vierna J, González-Tizón AM, Martínez-Lage A: Long-term evolution of 5S ribosomal DNA seems to be driven by birth-and-death processes and selection in ensis razor shells (Mollusca: Bivavia). Biochem Genet. 2009, 47: 635-644. 10.1007/s10528-009-9255-1.
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献