Evolution of S-domain receptor-like kinases in land plants and origination of S-locus receptor kinases in Brassicaceae

Author:

Xing Shilai,Li Mengya,Liu Pei

Abstract

Abstract Background The S-domain serine/threonine receptor-like kinases (SRLKs) comprise one of the largest and most rapidly expanding subfamilies in the plant receptor-like/Pelle kinase (RLKs) family. The founding member of this subfamily, the S-locus receptor kinase (SRK), functions as the female determinant of specificity in the self-incompatibility (SI) responses of crucifers. Two classes of proteins resembling the extracellular S domain (designated S-domain receptor-like proteins, SRLPs) or the intracellular kinase domain (designated S-domain receptor-like cytoplasmic kinases, SRLCKs) of SRK are also ubiquitous in land plants, indicating that the SRLKs are composite molecules that originated by domain fusion of the two component proteins. Here, we explored the origin and diversification of SRLKs by phylogenomic methods. Results Based on the distribution patterns of SRLKs and SRLCKs in a reconciled species-domain tree, a maximum parsimony model was then established for simultaneously inferring and dating gene duplication/loss and fusion /fission events in SRLK evolution. Various SRK alleles from crucifer species were then included in our phylogenetic analyses to infer the origination of SRKs by identifying the proper outgroups. Conclusions Two gene fusion events were inferred and the major gene fusion event occurred in the common ancestor of land plants generated almost all of extant SRLKs. The functional diversification of duplicated SRLKs was illustrated by molecular evolution analyses of SRKs. Our findings support that SRKs originated as two ancient haplotypes derived from a pair of tandem duplicate genes through random regulatory neo-/sub- functionalization in the common ancestor of the Brassicaceae.

Publisher

Springer Science and Business Media LLC

Subject

Ecology, Evolution, Behavior and Systematics

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3