Prebiotic replicase evolution in a surface-bound metabolic system: parasites as a source of adaptive evolution

Author:

Könnyű Balázs,Czárán Tamás,Szathmáry Eörs

Abstract

Abstract Background The remarkable potential of recent forms of life for reliably passing on genetic information through many generations now depends on the coordinated action of thousands of specialized biochemical "machines" (enzymes) that were obviously absent in prebiotic times. Thus the question how a complicated system like the living cell could have assembled on Earth seems puzzling. In seeking for a scientific explanation one has to search for step-by-step evolutionary changes from prebiotic chemistry to the emergence of the first proto-cell. Results We try to sketch a plausible scenario for the first steps of prebiotic evolution by exploring the ecological feasibility of a mineral surface-bound replicator system that facilitates a primitive metabolism. Metabolism is a hypothetical network of simple chemical reactions producing monomers for the template-copying of RNA-like replicators, which in turn catalyse metabolic reactions. Using stochastic cellular automata (SCA) simulations we show that the surface-bound metabolic replicator system is viable despite internal competition among the genes and that it also maintains a set of mild "parasitic" sequences which occasionally evolve functions such as that of a replicase. Conclusion Replicase activity is shown to increase even at the expense of slowing down the replication of the evolving ribozyme itself, due to indirect mutualistic benefits in a diffuse form of group selection among neighbouring replicators. We suggest possible paths for further evolutionary changes in the metabolic replicator system leading to increased metabolic efficiency, improved replicase functionality, and membrane production.

Publisher

Springer Science and Business Media LLC

Subject

Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3