Author:
Doley Robin,Tram Nguyen Ngoc Bao,Reza Md Abu,Kini R Manjunatha
Abstract
Abstract
Background
Toxin profiling helps in cataloguing the toxin present in the venom as well as in searching for novel toxins. The former helps in understanding potential pharmacological profile of the venom and evolution of toxins, while the latter contributes to understanding of novel mechanisms of toxicity and provide new research tools or prototypes of therapeutic agents.
Results
The pygmy copperhead (Austrelaps labialis) is one of the less studied species. In this present study, an attempt has been made to describe the toxin profile of A. labialis from Kangaroo Island using the cDNA library of its venom glands. We sequenced 658 clones which represent the common families of toxin genes present in snake venom. They include (a) putative long-chain and short-chain neurotoxins, (b) phospholipase A2, (c) Kunitz-type protease inhibitor, (d) CRISPs, (e) C-type lectins and (f) Metalloproteases. In addition, we have also identified a novel protein with two Kunitz-type domains in tandem similar to bikunin.
Conclusion
Interestingly, the cDNA library reveals that most of the toxin families (17 out of 43 toxin genes; ~40%) have truncated transcripts due to insertion or deletion of nucleotides. These truncated products might not be functionally active proteins. However, cellular trancripts from the same venom glands are not affected. This unusual higher rate of deletion and insertion of nucleotide in toxin genes may be responsible for the lower toxicity of A. labialis venom of Kangroo Island and have significant effect on evolution of toxin genes.
Publisher
Springer Science and Business Media LLC
Subject
Ecology, Evolution, Behavior and Systematics
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献