Author:
Fornarino Simona,Pala Maria,Battaglia Vincenza,Maranta Ramona,Achilli Alessandro,Modiano Guido,Torroni Antonio,Semino Ornella,Santachiara-Benerecetti Silvana A
Abstract
Abstract
Background
Central Asia and the Indian subcontinent represent an area considered as a source and a reservoir for human genetic diversity, with many markers taking root here, most of which are the ancestral state of eastern and western haplogroups, while others are local. Between these two regions, Terai (Nepal) is a pivotal passageway allowing, in different times, multiple population interactions, although because of its highly malarial environment, it was scarcely inhabited until a few decades ago, when malaria was eradicated. One of the oldest and the largest indigenous people of Terai is represented by the malaria resistant Tharus, whose gene pool could still retain traces of ancient complex interactions. Until now, however, investigations on their genetic structure have been scarce mainly identifying East Asian signatures.
Results
High-resolution analyses of mitochondrial-DNA (including 34 complete sequences) and Y-chromosome (67 SNPs and 12 STRs) variations carried out in 173 Tharus (two groups from Central and one from Eastern Terai), and 104 Indians (Hindus from Terai and New Delhi and tribals from Andhra Pradesh) allowed the identification of three principal components: East Asian, West Eurasian and Indian, the last including both local and inter-regional sub-components, at least for the Y chromosome.
Conclusion
Although remarkable quantitative and qualitative differences appear among the various population groups and also between sexes within the same group, many mitochondrial-DNA and Y-chromosome lineages are shared or derived from ancient Indian haplogroups, thus revealing a deep shared ancestry between Tharus and Indians. Interestingly, the local Y-chromosome Indian component observed in the Andhra-Pradesh tribals is present in all Tharu groups, whereas the inter-regional component strongly prevails in the two Hindu samples and other Nepalese populations.
The complete sequencing of mtDNAs from unresolved haplogroups also provided informative markers that greatly improved the mtDNA phylogeny and allowed the identification of ancient relationships between Tharus and Malaysia, the Andaman Islands and Japan as well as between India and North and East Africa. Overall, this study gives a paradigmatic example of the importance of genetic isolates in revealing variants not easily detectable in the general population.
Publisher
Springer Science and Business Media LLC
Subject
Ecology, Evolution, Behavior and Systematics
Reference87 articles.
1. Terrenato L, Shrestha S, Dixit KA, Luzzatto L, Modiano G, Morpurgo G, Arese P: Decreased malaria morbidity in the Tharu people compared to sympatric populations in Nepal. Ann Trop Med Parasitol. 1988, 82: 1-11.
2. Chopra VP: Studies on serum groups in the Kumaon region, India. Humangenetik. 1970, 10: 35-43. 10.1007/BF00297638.
3. Bista DB: People of Nepal. 1980, Kathmandu, Nepal: Ratna Pustak Bhandar
4. Brega A, Gardella R, Semino O, Morpurgo G, Astaldi Ricotti GB, Wallace DC, Santachiara-Benerecetti AS: Genetic studies on the Tharu population of Nepal, restriction endonuclease polymorphisms of mitochondrial DNA. Am J Hum Genet. 1986, 39: 502-512.
5. Passarino G, Semino O, Pepe G, Shrestha SL, Modiano G, Santachiara Benerecetti AS: MtDNA polymorphisms among Tharus of eastern Terai (Nepal). Gene Geography. 1992, 6: 139-147.
Cited by
64 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献