Author:
Wu Wenjie,Niles Edward G,LoVerde Philip T
Abstract
Abstract
Background:
Thyroid hormone receptors (TRs) function as molecular switches in response to thyroid hormone to regulate gene transcription. TRs were previously believed to be present only in chordates.
Results:
We isolated two TR genes from the Schistosoma mansoni and identified TR orthologues from other invertebrates: the platyhelminths, S. japonium and Schmidtea mediterranea, the mollusc, Lottia gigantean and the arthropod Daphnia pulex. Phylogenetic analysis of the DNA binding domain and/or ligand binding domain shows that invertebrate and vertebrate TRs cluster together, TRs from the vertebrates and from the jawless vertebrate (lamprey) clustered within separate subgroups, Platyhelminth TRs cluster outside of the vertebrate TR subgroups and that the schistosome TRs and S. mediterranea TRs clustered within separate subgroups.
Alignment of the C-terminus of the A/B domain revealed a conserved TR-specific motif, termed TR 'N-terminus signature sequence', with a consensus sequence of (G/P)YIPSY(M/L)XXXGPE(D/E)X.
Heterodimer formation between S. mansoni TRs and SmRXR1 suggests that the invertebrate TR protein gained the ability to form a heterodimer with RXR. ESMA analysis showed that SmTRα could bind to a conserved DNA core motif as a monomer or homodimer.
Conclusion:
Vertebrate TR genes originated from a common ancestor of the Bilateria. TR genes underwent duplication independently in the Protostomia and Deuterostomia. The duplication of TRs in deuterostomes occurred after the split of jawless and jawed vertebrates. In protostomes, TR genes underwent duplication in Platyhelminths, occurring independently in trematode and turbellarian lineages. Using S. mansoni TRs as an example, invertebrate TRs exhibited the ability to form a dimer with RXR prior to the emergence of the vertebrate TRs and were able to bind to vertebrate TR core DNA elements as a monomer or homodimer.
Publisher
Springer Science and Business Media LLC
Subject
Ecology, Evolution, Behavior and Systematics
Reference53 articles.
1. Moras D, Gronemeyer H: The nuclear receptor ligand-binding domain: structure and function. Curr Opin Cell Biol. 1998, 10 (3): 384-391. 10.1016/S0955-0674(98)80015-X.
2. Baniahmad A, Kohne AC, Renkawitz R: A transferable silencing domain is present in the thyroid hormone receptor, in the v-erbA oncogene product and in the retinoic acid receptor. The EMBO journal. 1992, 11 (3): 1015-1023.
3. Gronemeyer H, Laudet V: Transcription factors 3: nuclear receptors. Protein Profile. 1995, 2 (11): 1173-1308.
4. Laudet V, Gronemeyer H: The Nuclear Receptor Factsbook. 2001, Academic Press
5. Adams MD, Celniker SE, Holt RA, Evans CA, Gocayne JD, Amanatides PG, Scherer SE, Li PW, Hoskins RA, Galle RF: The genome sequence of Drosophila melanogaster. Science. 2000, 287 (5461): 2185-2195. 10.1126/science.287.5461.2185.
Cited by
57 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献