Author:
Yoon Hwan Su,Ciniglia Claudia,Wu Min,Comeron Josep M,Pinto Gabriele,Pollio Antonino,Bhattacharya Debashish
Abstract
Abstract
Background
Cyanidiales are unicellular extremophilic red algae that inhabit acidic and high temperature sites around hot springs and have also adapted to life in endolithic and interlithic habitats. Comparative genomic analysis of Cyanidioschyzon merolae and Galdieria sulphuraria predicts that the latter may be more broadly distributed in extreme environments because its genome contains membrane transporters involved in the uptake of reduced carbon compounds that are absent from C. merolae. Analysis of an endolithic site in the Phlegrean Fields near Naples, Italy is consistent with this prediction showing this population to be comprised solely of the newly described lineage Galdieria-B and C. merolae to be limited to humid habitats. Here, we conducted an environmental PCR survey of another extreme environment in Tuscany, Italy and contrasted Cyanidiales population structure at endolithic and interlithic habitats in Naples and Tuscany.
Results
We find a second Galdieria lineage (Galdieria-A) in endolithic and interlithic habitats in Tuscany but surprisingly Cyanidium was also present at these sites. The photoautotrophic Cyanidium apparently survives below the rock surface where sufficient light is available for photosynthesis. C. merolae is absent from all endolithic and interlithic sites in Tuscany. Population genetic analyses of a partial calmodulin gene fragment suggest a recent establishment or recurrent gene flow between populations in Tuscany, whereas the highly structured Galdieria-B population in Naples likely originated from 2–3 founder events. We find evidence of several recombination events across the calmodulin gene, potentially indicating the presence of sexual reproduction in the Tuscany populations.
Conclusion
Our study provides important data regarding population structure in extreme endolithic environments and insights into how Cyanidiales may be established in and adapt to these hostile environments.
Publisher
Springer Science and Business Media LLC
Subject
Ecology, Evolution, Behavior and Systematics
Reference33 articles.
1. Gross W, Kuver J, Tischendorf G, Bouchaala N, W. B: Cryptoendolithic growth of the red alga Galdieria suphuraria in volcanic areas. Eur J Phycol. 1998, 33: 25-31. 10.1080/09670269810001736503.
2. Hughes KA, Lawley B: A novel Antarctic microbial endolithic community within gypsum crusts. Environ Microbiol. 2003, 5: 555-565. 10.1046/j.1462-2920.2003.00439.x.
3. Friedman EI: Endolithic microorganisms in the Antarctic cold desert. Science. 1982, 215: 1045-1053. 10.1126/science.215.4536.1045.
4. Walker JJ, Spear JR, Pace NR: Geobiology of a microbial endolithic community in the Yellowstone geothermal environment. Nature. 2005, 434: 1011-1014. 10.1038/nature03447.
5. Pinto G, Albertano P, Ciniglia C, Cozzolino S, Pollio A, Yoon HS, Bhattacharya D: Comparative approaches to the taxonomy of the genus Galdieria Merola (Cyanidiales, Rhodophyta). Cryptogamie, Algol. 2003, 24: 13-32.
Cited by
47 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献