Author:
McLellan Andrew S,Zimmermann Wolfgang,Moore Tom
Abstract
Abstract
Background
Rodent and primate pregnancy-specific glycoprotein (PSG) gene families have expanded independently from a common ancestor and are expressed virtually exclusively in placental trophoblasts. However, within each species, it is unknown whether multiple paralogs have been selected for diversification of function, or for increased dosage of monofunctional PSG. We analysed the evolution of the mouse PSG sequences, and compared them to rat, human and baboon PSGs to attempt to understand the evolution of this complex gene family.
Results
Phylogenetic tree analyses indicate that the primate N domains and the rodent N1 domains exhibit a higher degree of conservation than that observed in a comparison of the mouse N1 and N2 domains, or mouse N1 and N3 domains. Compared to human and baboon PSG N domain exons, mouse and rat PSG N domain exons have undergone less sequence homogenisation. The high non-synonymous substitution rates observed in the CFG face of the mouse N1 domain, within a context of overall conservation, suggests divergence of function of mouse PSGs. The rat PSG family appears to have undergone less expansion than the mouse, exhibits lower divergence rates and increased sequence homogenisation in the CFG face of the N1 domain. In contrast to most primate PSG N domains, rodent PSG N1 domains do not contain an RGD tri-peptide motif, but do contain RGD-like sequences, which are not conserved in rodent N2 and N3 domains.
Conclusion
Relative conservation of primate N domains and rodent N1 domains suggests that, despite independent gene family expansions and structural diversification, mouse and human PSGs retain conserved functions. Human PSG gene family expansion and homogenisation suggests that evolution occurred in a concerted manner that maintains similar functions of PSGs, whilst increasing gene dosage of the family as a whole. In the mouse, gene family expansion, coupled with local diversification of the CFG face, suggests selection both for increased gene dosage and diversification of function. Partial conservation of RGD and RGD-like tri-peptides in primate and rodent N and N1 domains, respectively, supports a role for these motifs in PSG function.
Publisher
Springer Science and Business Media LLC
Subject
Ecology, Evolution, Behavior and Systematics
Reference54 articles.
1. Ohta T: Evolution of gene families. Gene. 2000, 259: 45-52. 10.1016/S0378-1119(00)00428-5.
2. Ota T, Nei M: Divergent evolution and evolution by the birth-and-death process in the immunoglobulin VH gene family. Mol Biol Evol. 1994, 11: 469-482.
3. Ohta T: On the evolution of multigene families. Theor Popul Biol. 1983, 23: 216-240. 10.1016/0040-5809(83)90015-1.
4. Gojobori T, Nei M: Concerted evolution of the immunoglobulin VH gene family. Mol Biol Evol. 1984, 1: 195-212.
5. Hughes AL, Green JA, Garbayo JM, Roberts RM: Adaptive diversification within a large family of recently duplicated, placentally expressed genes. Proc Natl Acad Sci U S A. 2000, 97: 3319-3323. 10.1073/pnas.050002797.
Cited by
34 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献