Molecular evolution under increasing transposable element burden in Drosophila: A speed limit on the evolutionary arms race

Author:

Castillo Dean M,Mell Joshua Chang,Box Kimberly S,Blumenstiel Justin P

Abstract

Abstract Background Genome architecture is profoundly influenced by transposable elements (TEs), and natural selection against their harmful effects is a critical factor limiting their spread. Genome defense by the piRNA silencing pathway also plays a crucial role in limiting TE proliferation. How these two forces jointly determine TE abundance is not well understood. To shed light on the nature of factors that predict TE success, we test three distinct hypotheses in the Drosophila genus. First, we determine whether TE abundance and relaxed genome-wide purifying selection on protein sequences are positively correlated. This serves to test the hypothesis that variation in TE abundance in the Drosophila genus can be explained by the strength of natural selection, relative to drift, acting in parallel against mildly deleterious non-synonymous mutations. Second, we test whether increasing TE abundance is correlated with an increased rate of amino-acid evolution in genes encoding the piRNA machinery, as might be predicted by an evolutionary arms race model. Third, we test whether increasing TE abundance is correlated with greater codon bias in genes of the piRNA machinery. This is predicted if increasing TE abundance selects for increased efficiency in the machinery of genome defense. Results Surprisingly, we find neither of the first two hypotheses to be true. Specifically, we found that genome-wide levels of purifying selection, measured by the ratio of non-synonymous to synonymous substitution rates (ω), were greater in species with greater TE abundance. In addition, species with greater TE abundance have greater levels of purifying selection in the piRNA machinery. In contrast, it appears that increasing TE abundance has primarily driven adaptation in the piRNA machinery by increasing codon bias. Conclusions These results indicate that within the Drosophila genus, a historically reduced strength of selection relative to drift is unlikely to explain patterns of increased TE success across species. Other factors, such as ecological exposure, are likely to contribute to variation in TE abundances within species. Furthermore, constraints on the piRNA machinery may temper the evolutionary arms race that would drive increasing rates of evolution at the amino acid level. In the face of these constraints, selection may act primarily by improving the translational efficiency of the machinery of genome defense through efficient codon usage.

Publisher

Springer Science and Business Media LLC

Subject

Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3