Species delineation using Bayesian model-based assignment tests: a case study using Chinese toad-headed agamas (genus Phrynocephalus)

Author:

Noble Daniel WA,Qi Yin,Fu Jinzhong

Abstract

Abstract Background Species are fundamental units in biology, yet much debate exists surrounding how we should delineate species in nature. Species discovery now requires the use of separate, corroborating datasets to quantify independently evolving lineages and test species criteria. However, the complexity of the speciation process has ushered in a need to infuse studies with new tools capable of aiding in species delineation. We suggest that model-based assignment tests are one such tool. This method circumvents constraints with traditional population genetic analyses and provides a novel means of describing cryptic and complex diversity in natural systems. Using toad-headed agamas of the Phrynocephalus vlangalii complex as a case study, we apply model-based assignment tests to microsatellite DNA data to test whether P. putjatia, a controversial species that closely resembles P. vlangalii morphologically, represents a valid species. Mitochondrial DNA and geographic data are also included to corroborate the assignment test results. Results Assignment tests revealed two distinct nuclear DNA clusters with 95% (230/243) of the individuals being assigned to one of the clusters with > 90% probability. The nuclear genomes of the two clusters remained distinct in sympatry, particularly at three syntopic sites, suggesting the existence of reproductive isolation between the identified clusters. In addition, a mitochondrial ND2 gene tree revealed two deeply diverged clades, which were largely congruent with the two nuclear DNA clusters, with a few exceptions. Historical mitochondrial introgression events between the two groups might explain the disagreement between the mitochondrial and nuclear DNA data. The nuclear DNA clusters and mitochondrial clades corresponded nicely to the hypothesized distributions of P. vlangalii and P. putjatia. Conclusions These results demonstrate that assignment tests based on microsatellite DNA data can be powerful tools for distinguishing closely related species and support the validity of P. putjatia. Assignment tests have the potential to play a significant role in elucidating biodiversity in the era of DNA data. Nonetheless, important limitations do exist and multiple independent datasets should be used to corroborate results from assignment programs.

Publisher

Springer Science and Business Media LLC

Subject

Ecology, Evolution, Behavior and Systematics

Reference69 articles.

1. Mayden RL: A hierarchy of species concepts: The denouement in the saga of the species problem. Species: The units of biodiversity. Edited by: Claridge M, Dawah H, Wilson M. 1997, London: Chapman and Hall, 381-424.

2. de Queiroz K: The general lineage concept of species, species criteria, and the process of speciation: A conceptual unification and terminological recommendations. Endless forms: Species and speciation. Edited by: Howard D, Berlocher S. 1998, New York: Oxford University Press, 57-75.

3. de Queiroz K: Species concepts and species delineation. Syst Biol. 2007, 56: 879-886. 10.1080/10635150701701083.

4. Weins JJ, Penkrot TA: Delimiting species using DNA and morphological variation and discordant species limits in spiny lizards (Sceloporus. Syst Biol. 2002, 51: 69-91. 10.1080/106351502753475880.

5. Sites JWJ, Marshall JC: Operational criteria for delimiting species. Annu Rev Ecol Evol Syst. 2004, 35: 199-227. 10.1146/annurev.ecolsys.35.112202.130128.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3