Author:
Cheng Shijun,Liu Renyi,Gallie Daniel R
Abstract
Abstract
Background
The programmed cell death 4 (PDCD4) protein is induced in animals during apoptosis and functions to inhibit translation and tumor promoter-induced neoplastic transformation. PDCD4 is composed of two MA3 domains that share similarity with the single MA3 domain present in the eukaryotic translation initiation factor (eIF) 4G, which serves as a scaffold protein to assemble several initiation factors needed for the recruitment of the 40S ribosomal subunit to an mRNA. Although eIF4A is an ATP-dependent RNA helicase that binds the MA3 domain of eIF4G to promote translation initiation, binding of eIF4A to the MA3 domains of PDCD4 inhibits protein synthesis. Genes encoding PDCD4 are present in many lower eukaryotes and in plants, but PDCD4 in higher plants is unique in that it contains four MA3 domains and has been implicated in ethylene signaling and abiotic stress responses. Here, we examine the evolution of PDCD4 in plants.
Results
In older algal lineages, PDCD4 contains two MA3 domains similar to the homolog in animals. By the appearance of early land plants, however, PDCD4 is composed of four MA3 domains which likely is the result of a duplication of the two MA3 domain form of the protein. Evidence from fresh water algae, from which land plants evolved, suggests that the duplication event occurred prior to the colonization of land. PDCD4 in more recently evolved chlorophytes also contains four MA3 domains but this may have resulted from an independent duplication event. Expansion and divergence of the PDCD4 gene family occurred during land plant evolution with the appearance of a distinct gene member following the evolution of basal angiosperms.
Conclusions
The appearance of a unique form of PDCD4 in plants correlates with the appearance of components of the ethylene signaling pathway, suggesting that it may represent the adaptation of an existing protein involved in programmed cell death to one that functions in abiotic stress responses through hormone signaling.
Publisher
Springer Science and Business Media LLC
Subject
Ecology, Evolution, Behavior and Systematics
Reference43 articles.
1. Preiss T, Hentze M: Starting the protein synthesis machine: eukaryotic translation initiation. Bioessay. 2003, 10: 1201-1211.
2. Kapp LD, Lorsch JR: The molecular mechanics of eukaryotic translation. Annu Rev Biochem. 2004, 73: 657-704. 10.1146/annurev.biochem.73.030403.080419.
3. Pestova TV, Lorsch JR, Hellen CUT: The mechanism of translation initiation in eukaryotes. Translational Control in Biology and Medicine. Edited by: Mathews MB, Sonenberg N, Hershey JWB. 2007, Cold Spring Harbor Laboratory: Cold Spring Harbor Laboratory Press, 87-128.
4. Bi XP, Ren JH, Goss DJ: Wheat germ translation initiation factor eIF4B affects eIF4A and eIFiso4F helicase activity by increasing the ATP binding affinity of eIF4A. Biochem. 2000, 39: 5758-5765. 10.1021/bi992322p.
5. Rogers GW, Richter NJ, Lima WF, Merrick WC: Modulation of the helicase activity of eIF4A by eIF4B, eIF4H, and eIF4F. J Biol Chem. 2001, 276: 30914-30922. 10.1074/jbc.M100157200.
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献