Abstract
AbstractA pervasive method for reconstructing microstructures from two-dimensional microstructures imaged on orthogonal planes is presented. The algorithm reconstructs 3D images through matching of 3D slices at different voxels to the representative 2D micrographs and an optimization procedure that ensures patches from the 2D micrographs meshed together seamlessly in the 3D image. We show that the method effectively models the three-dimensional features in the microstructure using three cases (i) disperse spheres, (ii) anisotropic lamellar microstructure, and (iii) a polycrystalline microstructure. The method is validated by comparing the point probability functions of the reconstructed images to the original 2D image, as well as by comparing the elastic properties of reconstructed image to the experimental data.
Publisher
Springer Science and Business Media LLC
Subject
Industrial and Manufacturing Engineering,General Materials Science
Cited by
45 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献